Skip to main content
Log in

Wear mechanism of coated and uncoated carbide cutting tool in machining process

  • Invited Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A carbide cutting tool is widely used in machining process due to its availability and being cheaper than a better performance cutting tool, such as cubic boron nitride. The carbide cutting tool also has substantial hardness and toughness that is suitable to be applied in intermittent cutting. This paper presents the case study of a wear mechanism experienced on the cutting edge of the coated and uncoated carbide tools in turning and milling processes. The wear mechanisms of carbide cutting tools were investigated in machining Inconel 718, titanium alloy Ti–6Al–4V extra-low interstitial, and aluminum metal matrix composite (AlSi/AlN MMC) at their high cutting speed regime. The tools failed primarily due to wear on the flank and rake faces. The failure mode of the carbide cutting tools was similar regardless of the machining operations and coating is believed to enhance the tool life, but once removed, the tool fails similar to that with the uncoated tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. I.M. Hutchings: Abrasive and erosive wear tests for thin coatings: A unified approach. Tribol. Int. 31, 5–15 (1998).

    Article  CAS  Google Scholar 

  2. Z. Wang and Q. Zhou: Applying a population growth model to simulate wear of rough surfaces during running-in. Wear 294–295, 356–363 (2012).

    Article  Google Scholar 

  3. Y.S. Liao, H.M. Lin, and J.H. Wang: Behaviors of end milling Inconel 718 superalloy by cemented carbide tools. J. Mater. Process. Technol. 201, 460–465 (2008).

    Article  CAS  Google Scholar 

  4. A.R.C. Sharman, J.I. Hughes, and K. Ridgway: Workpiece surface integrity and tool life issues when turning inconel 718™ nickel based superalloy. Mach. Sci. Technol. 8, 399–414 (2004).

    Article  Google Scholar 

  5. K. Srinivasulu and B.K. Subhash: Studies On The Residual Stresses Due To Machining On Super Alloy Inconel-718. In International Conference on Aerospace Science and Technology, Bangalore, India, 2008.

  6. M. Alauddin, M.A. El Baradie, and M.S.J. Hashmi: Optimization of surface finish in end milling Inconel 718. J. Mater. Process. Technol. 56, 54–65 (1996).

    Article  Google Scholar 

  7. E. Bradley: Superalloys. In ASM International, Metal Park, 1988.

    Google Scholar 

  8. H.R. Krain, A.R.C. Sharman, and K. Ridgway: Optimisation of tool life and productivity when end milling Inconel 718TM. J. Mater. Process. Technol. 189, 153–161 (2007).

    Article  CAS  Google Scholar 

  9. A. Sharman, R.C. Dewes, and D.K. Aspinwall: Tool life when high speed ball nose end milling Inconel 718. J. Mater. Process. Technol. 118, 29–35 (2001).

    Article  CAS  Google Scholar 

  10. C.H. Che-Haron and A. Jawaid: The effect of machining on surface integrity of titanium alloy Ti-6% Al-4% V. J. Mater. Process. Technol. 166, 188–192 (2005).

    Article  CAS  Google Scholar 

  11. Z.M. Wang and E.O. Ezugwu: Performance of PVD-coated carbide tools when machining Ti-6Al-4V©. Tribol. Trans. 40, 81–86 (1997).

    Article  CAS  Google Scholar 

  12. A. Jawaid, S. Sharif, and S. Koksal: Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy. J. Mater. Process. Technol. 99, 266–274 (2000).

    Article  Google Scholar 

  13. N. Muthukrishnan, M. Murugan, and K.P. Rao: An investigation on the machinability of Al-SiC metal matrix composites using pcd inserts. Int. J. Adv. Manuf. Technol. 38, 447–454 (2008).

    Article  Google Scholar 

  14. R. Vaziri, D. Delfosse, G. Pageau, and A. Poursartip: High-speed impact response of particulate metal matrix composite materials—An experimental and theoretical investigation. Int. J. Impact Eng. 13, 329–352 (1993).

    Article  Google Scholar 

  15. S. Barnes, I.R. Pashby, and D.K. Mok: The effect of workpiece temperature on the machinability of an aluminum/SiC MMC. J. Manuf. Sci. Eng., Trans. ASME 118, 422–427 (1996).

    Article  Google Scholar 

  16. P.J. Heath: Developments in applications of PCD tooling. J. Mater. Process. Technol. 116, 31–38 (2001).

    Article  Google Scholar 

  17. N.P. Hung, S.H. Yeo, and B.E. Oon: Effect of cutting fluid on the machinability of metal matrix composites. J. Mater. Process. Technol. 67, 157–161 (1997).

    Article  Google Scholar 

  18. Y. Yang, R. Boom, B. Irion, D-J. van Heerden, P. Kuiper, and H. de Wit: Recycling of composite materials. Chem. Eng. Process.: Process Intensif. 51, 53–68 (2012).

    Article  CAS  Google Scholar 

  19. X. Ding, W.Y.H. Liew, and X.D. Liu: Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259, 1225–1234 (2005).

    Article  CAS  Google Scholar 

  20. L.A. Looney, J.M. Monaghan, P. O’Reilly, and D.M.R. Taplin: The turning of an Al/SiC metal-matrix composite. J. Mater. Process. Technol. 33, 453–468 (1992).

    Article  Google Scholar 

  21. N.P. Hung, F.Y.C. Boey, K.A. Khor, C.A. Oh, and H.F. Lee: Machinability of cast and powder-formed aluminum alloys reinforced with SiC particles. J. Mater. Process. Technol. 48, 291–297 (1995).

    Article  Google Scholar 

  22. S. Durante, G. Rutelli, and F. Rabezzana: Aluminum-based MMC machining with diamond-coated cutting tools. Surf. Coat. Technol. 94–95, 632–640 (1997).

    Article  Google Scholar 

  23. M.S. Kasim, C.H. Che Haron, J.A. Ghani, M.A. Sulaiman, and M.Z.A. Yazid: Wear mechanism and notch wear location prediction model in ball nose end milling of Inconel 718. Wear 302, 1171–1179 (2013).

    Article  CAS  Google Scholar 

  24. A. Jawaid, S. Koksal, and S. Sharif: Cutting performance and wear characteristics of PVD coated and uncoated carbide tools in face milling Inconel 718 aerospace alloy. J. Mater. Process. Technol. 116, 2–9 (2001).

    Article  Google Scholar 

  25. M. El-Gallab and M. Sklad: Machining of Al/SiC particulate metal matrix composites: Part II: Workpiece surface integrity. J. Mater. Process. Technol. 83, 277–285 (1998).

    Article  Google Scholar 

  26. C.J.E. Andrewes, H-Y. Feng, and W.M. Lau: Machining of an aluminum/SiC composite using diamond inserts. J. Mater. Process. Technol. 102, 25–29 (2000).

    Article  Google Scholar 

  27. M.A. Sulaiman, C.H. Che Haron, J.A. Ghani, and M.S. Kasim: The study of wear process on uncoated carbide cutting tool in machining titanium alloy. J. Appl. Sci. Res. 8, 4821–4827 (2012).

    CAS  Google Scholar 

  28. J.A. Arsecularatne, L.C. Zhang, and C. Montross: Wear and tool life of tungsten carbide, PCBN and PCD cutting tools. Int. J. Mach. Tools Manuf. 46, 482–491 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaharah A. Ghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani, J.A., Che Haron, C.H., Kasim, M.S. et al. Wear mechanism of coated and uncoated carbide cutting tool in machining process. Journal of Materials Research 31, 1873–1879 (2016). https://doi.org/10.1557/jmr.2015.382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.382

Navigation