Skip to main content
Log in

Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy

  • Invited Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Layered materials are an actively pursued area of research for realizing highly scaled technologies involving both traditional device structures as well as new physics. Lately, non-equilibrium growth of 2D materials using molecular beam epitaxy (MBE) is gathering traction in the scientific community and here we aim to highlight one of its strengths, growth of abrupt heterostructures, and superlattices (SLs). In this work we present several of the firsts: first growth of MoTe2 by MBE, MoSe2 on Bi2Se3 SLs, transition metal dichalcogenide (TMD) SLs, and lateral junction between a quintuple atomic layer of Bi2Te3 and a triple atomic layer of MoTe2. Reflected high electron energy diffraction oscillations presented during the growth of TMD SLs strengthen our claim that ultrathin heterostructures with monolayer layer control is within reach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  2. B.V. Lotsch: Superlattices of 2D nanosheets. Annu. Rev. Mater. Res. 45(1), 85–109 (2015).

    Article  CAS  Google Scholar 

  3. F. Wang, Z. Wang, Q. Wang, F. Wang, L. Yin, K. Xu, Y. Huang, and J. He: Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 26(29), 292001 (2015).

    Article  CAS  Google Scholar 

  4. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutie, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, O.M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger: Opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013).

    Article  CAS  Google Scholar 

  5. W. Zhao, R.M. Ribeiro, and G. Eda: Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc. Chem. Res. 48, 91–99 (2015).

    Article  CAS  Google Scholar 

  6. Y.S. Hor, A. Richardella, P. Roushan, Y. Xia, J.G. Checkelsky, A. Yazdani, M.Z. Hasan, N.P. Ong, and R.J. Cava: P-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B: Condens. Matter Mater. Phys. 79(19), 2–6 (2009).

    Article  CAS  Google Scholar 

  7. J.E. Boschker, J. Momand, V. Bragaglia, R. Wang, K. Perumal, A. Giussani, B.J. Kooi, H. Riechert, and R. Calarco: Surface reconstruction-induced coincidence lattice formation between two-dimensionally bonded materials and a three-dimensionally bonded substrate. Nano Lett. 14(6), 3534–3538 (2014).

    Article  CAS  Google Scholar 

  8. S. Das and J. Appenzeller: WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 103(10), 103501 (2013).

    Article  CAS  Google Scholar 

  9. J.S. Ross, P. Klement, A.M. Jones, N.J. Ghimire, J. Yan, D.G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D.H. Cobden, and X. Xu: Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9(4), 268–272 (2014).

    Article  CAS  Google Scholar 

  10. K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D.C. Dillen, C.M. Corbet, and E. Tutuc: Band alignment in WSe2 graphene heterostructures. ACS Nano 9(4), 4527–4532 (2015).

    Article  CAS  Google Scholar 

  11. S.J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D.C. Elias, K.S. Novoselov, L.A. Ponomarenko, A.K. Geim, and R. Gorbachev: Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11(9), 764–767 (2012).

    Article  CAS  Google Scholar 

  12. Y. Lin, N. Lu, N. Perea-lopez, J. Li, Z. Lin, X. Peng, C.H. Lee, C. Sun, L. Calderin, P.N. Browning, M.S. Bresnehan, M.J. Kim, T.S. Mayer, M. Terrones, and J.A. Robinson: Direct synthesis of van der Waals solids. ACS Nano 8(4), 3715–3723 (2014).

    Article  CAS  Google Scholar 

  13. C. Huang, S. Wu, A.M. Sanchez, J.J.P. Peters, R. Beanland, J.S. Ross, P. Rivera, W. Yao, D.H. Cobden, and X. Xu: Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    Article  CAS  Google Scholar 

  14. J.S. Moon, H. Seo, F. Stratan, M. Antcliffe, A. Schmitz, R.S. Ross, A.A. Kiselev, V.D. Wheeler, L.O. Nyakiti, D.K. Gaskill, K-M. Lee, and P.M. Asbeck: Lateral graphene heterostructure field-effect transistor. IEEE Electron Device Lett. 34(9), 1190–1192 (2013).

    Article  CAS  Google Scholar 

  15. D. Liang, J.R. Schmidt, and S. Jin: Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. Nano Lett. 14(6), 3047–3054 (2014).

    Article  CAS  Google Scholar 

  16. H. Böttner, G. Chen, and R. Venkatasubramanian: Aspects of thin fim superlattice thermoeletric materials, devices, and applications. MRS Bull. 31, 211–217 (2006).

    Article  Google Scholar 

  17. H. Osterhage, J. Gooth, B. Hamdou, P. Gwozdz, R. Zierold, and K. Nielsch: Thermoelectric properties of topological insulator Bi2Te3, Sb2Te3, and Bi2Se3 thin film quantum wells. Appl. Phys. Lett. 105(12), 123117 (2014).

    Article  CAS  Google Scholar 

  18. F.S. Ohuchi, T. Shimada, B.A. Parkinson, K. Ueno, and A. Koma: Growth of MoSe2 thin films with Van der Waals epitaxy. J. Cryst. Growth 111, 1033–1037 (1991).

    Article  CAS  Google Scholar 

  19. F.S. Ohuchi, B.A. Parkinson, K. Ueno, and A. Koma: van der Waals epitaxial growth and characterization of MoSe2 thin films on SnS2. J. Appl. Phys. 68(5), 2168 (1990).

    Article  CAS  Google Scholar 

  20. R. Schlaf, O. Lang, C. Pettenkofer, and W. Jaegermann: Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. J. Appl. Phys. 85(5), 2732 (1999).

    Article  CAS  Google Scholar 

  21. S. Tiefenbacher, H. Sehnert, C. Pettenkofer, and W. Jaegermann: Epitaxial films of WS2 by metal organic van der Waals epitaxy (MO-VDWE). Surf. Sci. 318, L1161–L1164 (1994).

    Article  CAS  Google Scholar 

  22. C. Hammond, A. Back, M. Lawrence, K. Nebesny, P. Lee, R. Schlaf, and N.R. Armstrong: Growth of layered semiconductors by molecular-beam epitaxy: Formation and characterization of GaSe, MoSe2, and phthalocyanine ultrathin films on sulfur-passivated GaP(111). J. Vac. Sci. Technol., A 13(3), 1768 (1995).

    Article  CAS  Google Scholar 

  23. T. Hayashi, K. Ueno, K. Saiki, and A. Koma: Investigation of the growth mechanism of an InSe epitaxial layer on a MoS2 substrate. J. Cryst. Growth 219, 115–122 (2000).

    Article  CAS  Google Scholar 

  24. S. Vishwanath, X. Liu, S. Rouvimov, P.C. Mende, A. Azcatl, S. McDonnell, R.M. Wallace, R.M. Feenstra, J.K. Furdyna, D. Jena, and H. Grace Xing: Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Mater. 2(2), 024007 (2015).

    Article  CAS  Google Scholar 

  25. M.M. Ugeda, A.J. Bradley, S-F. Shi, F.H. da Jornada, Y. Zhang, D.Y. Qiu, W. Ruan, S-K. Mo, Z. Hussain, Z-X. Shen, F. Wang, S.G. Louie, and M.F. Crommie: Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    Article  CAS  Google Scholar 

  26. E. Xenogiannopoulou, P. Tsipas, K.E. Aretouli, D. Tsoutsou, S.A. Giamini, C. Bazioti, G.P. Dimitrakopulos, P. Komninou, S. Brems, C. Huyghebaert, I.P. Radu, and A. Dimoulas: High-quality large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale 7, 7896–7905 (2015).

    Article  CAS  Google Scholar 

  27. H. Liu, H. Zheng, F. Yang, L. Jiao, J. Chen, W. Ho, and C. Gao: Line and point defects in MoSe2 bilayer studied by scanning tunneling microscopy and spectroscopy. ACS Nano 9(6), 6619–6625 (2015).

    Article  CAS  Google Scholar 

  28. S-Y. Xu, N. Alidoust, I. Belopolski, A. Richardella, C. Liu, M. Neupane, G. Bian, S-H. Huang, R. Sankar, C. Fang, B. Dellabetta, W. Dai, Q. Li, M.J. Gilbert, F. Chou, N. Samarth, and M.Z. Hasan: Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor. Nat. Phys. 10, 943–950 (2014).

    Article  CAS  Google Scholar 

  29. S. Liu, X. Yuan, P. Wang, Z. Chen, L. Tang, E. Zhang, and C. Zhang: Controllable growth of vertical heterostructure GaTexSe1−x/Si by molecular beam epitaxy. ACS Nano 9(8), 8592–8598 (2015).

    Article  CAS  Google Scholar 

  30. A.K. Geim and I.V. Grigorieva: Van der Waals heterostructures. Nature 499(7459), 419–425 (2013).

    Article  CAS  Google Scholar 

  31. C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, and K. Cho: Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013).

    Article  CAS  Google Scholar 

  32. L.S. McCarthy, I.P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D.L. Pulfrey, J.S. Speck, M.J.W. Rodwell, S.P. DenBaars, and U.K. Mishra: GaN HBT: Toward an RF device. IEEE Trans. Electron devices 48(3), 543–551 (2001).

    Article  CAS  Google Scholar 

  33. H. Kroemer: Heterostructure bipolar transistors and integrated circuits. Proc. IEEE 70, 13–25 (1982).

    Article  Google Scholar 

  34. W.D. Goodhue: Using molecular-beam epitaxy to fabricate quantum-well devices. Linc. Lab. J. 2, 183–205 (1989).

    Google Scholar 

  35. J. Bernède, C. Amory, L. Assmann, and M. Spiesser: X-ray photoelectron spectroscopy study of MoTe2 single crystals and thin films. Appl. Surf. Sci. 219(3–4), 238–248 (2003).

    Article  CAS  Google Scholar 

  36. J.C. Park, S.J. Yun, H. Kim, J. Park, S.H. Chae, S. An, J-G. Kim, S. Kim, K.K. Kim, and Y.H. Lee: Phase-engineered synthesis 2H-molybdenum ditelluride thin films. ACS Nano 9(6), 6548–6554 (2015).

    Article  CAS  Google Scholar 

  37. R. Nitsche, H.U. Bolsterli, and M. Lichtenstriger: Crystal growth by chemical transport reactions—I. J. Phys. Chem. Solids 21(3/4), 199–205 (1961).

    Article  CAS  Google Scholar 

  38. J.C. Bernede, M. Kettaf, A. Khelil, and M. Spiesser: p-n junctions in molybdenum ditelluride. Phys. Status Solidi A 157, 205–209 (1996).

    Article  CAS  Google Scholar 

  39. S. Xiao, M. Li, A. Seabaugh, J. Debdeep, and H.G. Xing: Vertical heterojunction of MoS2 and WSe2. Device Res. Conf. 72, 169–170 (2014).

    Article  Google Scholar 

  40. R. Yan, S. Fathipour, Y. Han, B. Song, S. Xiao, M. Li, N. Ma, V. Protasenko, D.A. Muller, D. Jena, and H.G. Xing: Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15(9), 5791–5798 (2015).

    Article  CAS  Google Scholar 

  41. M. (Oscar) Li, D. Esseni, G. Snider, D. Jena, and H. Grace Xing: Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor. J. Appl. Phys. 115(7), 074508 (2014).

    Article  CAS  Google Scholar 

  42. I.G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, and A.F. Morpurgo: Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett. 15(4), 2336–2342 (2015).

    Article  CAS  Google Scholar 

  43. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y-S. Huang, C-H. Ho, J. Yan, D.F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F.M. Peeters, and J. Wu: Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014).

    Article  CAS  Google Scholar 

  44. M. Sugiyama, S. Maeyama, and M. Oshima: Surface-structure analysis of sulfur-passivated GaAs(111)A and GaAs(111)B by x-ray standing-wave triangulation. Phys. Rev. B 48(15), 11037–11042 (1993).

    Article  CAS  Google Scholar 

  45. K. Ueno, T. Shimada, K. Saiki, and A. Koma: Heteroepitaxial growth of layered transition metal dichalcogenides on sulfur-terminated GaAs{111} surfaces. Appl. Phys. Lett. 56(4), 327 (1990).

    Article  CAS  Google Scholar 

  46. G. Abstreiter, E. Bauser, A. Fischer, and K. Ploog: Raman spectroscopy—A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1−xAs. Appl. Phys. 16(4), 345–352 (1978).

    Article  CAS  Google Scholar 

  47. T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, and J. Pollmann: Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64(23), 235305 (2001).

    Article  CAS  Google Scholar 

  48. X. Liu, D.J. Smith, H. Cao, Y.P. Chen, J. Fan, Y-H. Zhang, R.E. Pimpinella, M. Dobrowolska, and J.K. Furdyna: Characterization of Bi2Te3 and Bi2Se3 topological insulators grown by MBE on (001) GaAs substrates. J. Vac. Sci. Technol., B 30(2), 02B103 (2012).

    Article  CAS  Google Scholar 

  49. S. Vishwanath, X. Liu, S. Rouvimov, A. Azcatl, R.M. Wallace, J.K. Furdyna, D. Jena, and H. Grace Xing: MBE growth of MoTe2. (2015). In preparation.

  50. R. He, Z. Wang, R.L.J. Qiu, C. Delaney, B. Beck, T.E. Kidd, C.C. Chancey, and X.P.A. Gao: Observation of infrared-active modes in Raman scattering from topological insulator nanoplates. Nanotechnology 23(45), 455703 (2012).

    Article  CAS  Google Scholar 

  51. W. Richter, H. Kohler, and C.R. Becker: A raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 < x <1), (Bi1−ySby)2Te3 (0 < y <1). Phys. Status Solidi B 84, 619–628 (1977).

    Article  CAS  Google Scholar 

  52. M. Yamamoto, S.T. Wang, M. Ni, Y.F. Lin, S.L. Li, S. Aikawa, W. Bin Jian, K. Ueno, K. Wakabayashi, and K. Tsukagoshi: Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 8(4), 3895–3903 (2014).

    Article  CAS  Google Scholar 

  53. L-D. Zhao, S-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373–377 (2014).

    Article  CAS  Google Scholar 

  54. L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, and Q. Wang: Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 135(4), 1213–1216 (2013).

    Article  CAS  Google Scholar 

  55. T. Shimada, F.S. Ohuchi, and A. Koma: Molecular beam epitaxy of SnSe2: Chemistry and electronic properties of interfaces. Jpn. J. Appl. Phys. 32, 1182–1185 (1993).

    Article  CAS  Google Scholar 

  56. R. Schlaf, D. Louder, O. Lang, C. Pettenkofer, W. Jaegermann, K.W. Nebesny, P.A. Lee, B.A. Parkinson, and N.R. Armstrong: Molecular beam epitaxy growth of thin films of SnS2 and SnSe2 on cleaved mica and the basal planes of single-crystal layered semiconductors: Reflection high-energy electron diffraction, low-energy electron diffraction, photoemission, and scanning tunnelin. J. Vac. Sci. Technol., A 13(3), 1761 (1995).

    Article  CAS  Google Scholar 

  57. D.G. Mead and J.C. Irwin: Raman spectra of SnS2 and SnSe2. Solid State Commun. 20, 885–887 (1976).

    Article  CAS  Google Scholar 

  58. A.J. Smith, P.E. Meek, and W.Y. Liang: Raman scattering studies of SnS2 and SnSe2. J. Phys. Chem. C 10, 1321 (1977).

    CAS  Google Scholar 

  59. S. Vishwanath, X. Liu, S. Rouvimov, J.K. Furdyna, D. Jena, and H. Grace Xing: Influence of growth conditions on MBE tin selenide on GaAs (111)B. (2015). In preparation.

  60. N.D. Boscher, C.J. Carmalt, R.G. Palgrave, and I.P. Parkin: Atmospheric pressure chemical vapour deposition of SnSe and SnSe2 thin films on glass. Thin Solid Films 516, 4750–4757 (2008).

    Article  CAS  Google Scholar 

  61. H. Terrones, F. López-Urías, and M. Terrones: Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013).

    Article  CAS  Google Scholar 

  62. G. Gao, W. Gao, E. Cannuccia, J. Taha-Tijerina, L. Balicas, A. Mathkar, T.N. Narayanan, Z. Liu, B.K. Gupta, J. Peng, Y. Yin, A. Rubio, and P.M. Ajayan: Artificially stacked atomic layers: Toward new van der Waals solids. Nano Lett. 12(7), 3518–3525 (2012).

    Article  CAS  Google Scholar 

  63. J. He, K. Hummer, and C. Franchini: Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2,WS2, and WSe2. Phys. Rev. B 89(7), 075409 (2014).

    Article  CAS  Google Scholar 

  64. A. Herrera-Gómez, A. Hegedus, and P.L. Meissner: Chemical depth profile of ultrathin nitrided SiO2 films. Appl. Phys. Lett. 81(6), 1014–1016 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

L.B. acknowledges the financial support of the National Secretariat of Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT). Microscopy conducted at ORNL’s Center for Nanophase Materials Sciences (CNMS), which is a U.S. Department of Energy, Office of Science User Facility (JCI).

This work was supported in part by the NSF/AFOSR EFRI-2DARE program (1433490), NSF Grant DMR1400432 and Center for Low Energy Systems Technology (LEAST), one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suresh Vishwanath or Huili Grace Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwanath, S., Liu, X., Rouvimov, S. et al. Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy. Journal of Materials Research 31, 900–910 (2016). https://doi.org/10.1557/jmr.2015.374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.374

Navigation