Skip to main content
Log in

Rigorous substrate cleaning process for reproducible thin film hematite (α-Fe2O3) photoanodes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hematite (α-Fe2O3) photoanodes are widely studied as candidates for water splitting photoelectrochemical (PEC) cells. To speed up the development of high efficiency hematite photoanodes, systematic investigations of the effect of material properties such as dopants and microstructure on PEC properties that determine the photoanode performance are crucial. Toward this end, this work presents a route for reproducible fabrication of thin film hematite photoanodes with reproducible microstructure and PEC properties. Hematite thin (50 nm) films are deposited by pulsed laser deposition from a Ti-doped (1 cation%) Fe2O3 target onto cleaned transparent conducting substrates (fluorinated tin oxide, FTO, coated glass substrates). Special attention is paid to rigorous cleaning of the substrates prior to the hematite deposition, which is found to be crucial for achieving highly reproducible results. Specimens prepared by this route display homogenous conformal coating with very little spread in PEC properties between different specimens, meeting the necessary prerequisite for systematic investigation of hematite photoanodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
SCHEME 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. N.S. Lewis and D.G. Nocera: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  2. J. Barber and P.D. Tran: From natural to artificial photosynthesis. J. R. Soc., Interface 10, 20120984 (2013).

    Article  Google Scholar 

  3. M. Gratzel: Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  CAS  Google Scholar 

  4. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  5. G.A. Olah: Beyond oil and gas: The methanol economy. Angew. Chem., Int. Ed. 44, 2636–2639 (2005).

    Article  CAS  Google Scholar 

  6. W. Wang, S. Wang, X. Ma, and J. Gong: Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011).

    Article  CAS  Google Scholar 

  7. K. Sivula, F. Le Formal, and M. Grätzel: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432–449 (2011).

    Article  CAS  Google Scholar 

  8. Y. Lin, G. Yuan, S. Sheehan, S. Zhou, and D. Wang: Hematite-based solar water splitting: Challenges and opportunities. Energy Environ. Sci 4, 4862–4869 (2011).

    Article  CAS  Google Scholar 

  9. M.J. Katz, S.C. Riha, N.C. Jeong, A.B.F. Martinson, O.K. Farha, and J.T. Hupp: Toward solar fuels: Water splitting with sunlight and “rust”? Coord. Chem. Rev. 256, 2521–2529 (2012).

    Article  CAS  Google Scholar 

  10. D.K. Bora, A. Braun, and E.C. Constable: “In rust we trust”. Hematite—The prospective inorganic backbone for artificial photosynthesis. Energy Environ. Sci. 6, 407–425 (2013).

    Article  CAS  Google Scholar 

  11. K.M.H. Young, B.M. Klahr, O. Zandi, and T.W. Hamann: Photocatalytic water oxidation with hematite electrodes. Catal. Sci. Technol. 3, 1660–1671 (2013).

    Article  CAS  Google Scholar 

  12. R.D.L. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel, and C.P. Berlinguette: Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013).

    Article  CAS  Google Scholar 

  13. M.S. Prévot and K. Sivula: Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C 117, 17879–17893 (2013).

    Article  Google Scholar 

  14. F.J. Morin: Electrical properties of α-Fe2O3. Phys. Rev. 93, 1195–1199 (1954).

    Article  CAS  Google Scholar 

  15. H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild: Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 12, 158–164 (2013).

    Article  CAS  Google Scholar 

  16. S.C. Warren, K. Voïtchovsky, H. Dotan, C.M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, and M. Grätzel: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013).

    Article  CAS  Google Scholar 

  17. J.Y. Kim, G. Magesh, D.H. Youn, J-W. Jang, J. Kubota, K. Domen, and J.S. Lee: Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 2681 (2013).

    Article  Google Scholar 

  18. T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Grätzel, and N. Mathews: Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv. Mater. 24, 2699–2702 (2012).

    Article  CAS  Google Scholar 

  19. M. Barroso, A.J. Cowan, S.R. Pendlebury, M. Grätzel, D.R. Klug, and J.R. Durrant: The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 133, 14868–14871 (2011).

    Article  CAS  Google Scholar 

  20. C. Du, X. Yang, M.T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping, and D. Wang: Hematite-based water splitting with low turn-on voltages. Angew. Chem., Int. Ed. Engl. 52, 12692–12695 (2013).

    Article  CAS  Google Scholar 

  21. S.D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel: Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem., Int. Ed. Engl. 49, 6405–6408 (2010).

    Article  CAS  Google Scholar 

  22. V.G.M. Sivel, J. Van den Brand, W.R. Wang, H. Mohdadi, F.D. Tichelaar, P.F.A. Alkemade, and H.W. Zandbergen: Application of the dual-beam FIB/SEM to metals research. J. Microsc. 214, 237–245 (2004).

    Article  CAS  Google Scholar 

  23. S. Reyntjens and R.A. Puers: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287 (2001).

    Article  CAS  Google Scholar 

  24. R. Krol: Chapter 2. Principles of Photoelectrochemical Cells. In Photoelectrochemical Hydrogen Production, R. van de Krol and M. Grätzel eds.; Springer: New York, 2012.

    Chapter  Google Scholar 

  25. ASTM G173-03: Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface (DOI: 10.1520/G0173-03R12). (2012).

Download references

ACKNOWLEDGMENT

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement n. 617516, and from the Israeli Ministry of Science, Technology and Space (Grant No. 3–9699). The results were obtained using central facilities at the Technion’s Hydrogen Technologies Research Laboratory (HTRL), supported by the Adelis Foundation and by the Solar Fuels I-CORE program of the Planning and Budgeting Committee and the Israel Science Foundation (Grant No. 152/11), the Photovoltaic Laboratory, supported by the Nancy & Stephen Grand Technion Energy Program (GTEP) and by the Russell Berrie Nanotechnology Institute (RBNI), and the Micro and Nano Fabrication Unit (MNFU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avner Rothschild.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malviya, K.D., Dotan, H., Yoon, K.R. et al. Rigorous substrate cleaning process for reproducible thin film hematite (α-Fe2O3) photoanodes. Journal of Materials Research 31, 1565–1573 (2016). https://doi.org/10.1557/jmr.2015.300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.300

Navigation