Skip to main content
Log in

Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated and presented through an integrated study of both the plasma phase and the resulting material surface. Three methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: (i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which simultaneously decreases the total etching. The deposition of CxFy films by a dielectric barrier discharge leads to hydrophobic coatings with water contact angles (WCAs) of 115°, but only the filamentary argon discharge induces higher WCAs. Finally, nanoparticles were deposited under the fluorinated layer to increase the surface roughness and therefore produce super-hydrophobic hybrid coatings characterized by the nonadherence of the water droplet at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

Similar content being viewed by others

References

  1. B. Bhushan and Y.C. Jung: Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1 (2011).

    Article  CAS  Google Scholar 

  2. E.L. Decker and S. Garoff: Contact line structure and dynamics on surfaces with contact angle hysteresis. Langmuir 13, 6321 (1997).

    Article  CAS  Google Scholar 

  3. D. Öner and T.J. McCarthy: Ultrahydrophobic surfaces: Effects of topography length scales on wettability. Langmuir 16, 7777 (2000).

    Article  CAS  Google Scholar 

  4. L. Zhai, F.C. Cebeci, R.E. Cohen, and M.F. Rubner: Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4, 1349 (2004).

    Article  CAS  Google Scholar 

  5. D. Schondelmaier, S. Cramm, R. Klingeler, J. Morenzin, and W. Eberhardt: Orientation and self-assembly of hydrophobic fluoroalkylsilanes. Langmuir 18, 6242 (2002).

    Article  CAS  Google Scholar 

  6. C.J. Brinker and G.W. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Inc., San Diego, USA, 1990).

    Google Scholar 

  7. S. Ebnesajjad: Introduction to Fluoropolymers: Materials, Technology, and Applications (Elsevier Inc., Oxford, England, 2013).

    Google Scholar 

  8. M. Morra, E. Occhiello, and F. Garbassi: Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene). Langmuir 5, 872 (1989).

    Article  CAS  Google Scholar 

  9. M.E. Ryan and J.P.S. Badyal: Surface texturing of PTFE film using nonequilibrium plasmas. Macromolecules 28, 1377 (1995).

    Article  CAS  Google Scholar 

  10. N. Vandencasteele, B. Broze, S. Collette, C. De Vos, P. Viville, R. Lazzaroni, and F. Reniers: Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synthesis. Langmuir 26, 16503 (2010).

    Article  CAS  Google Scholar 

  11. J.P. Badey, E. Espuche, D. Sage, B. Chabert, Y. Jugnet, C. Batier, and T.M. Duc: A comparative study of the effects of ammonia and hydrogen plasma downstream treatment on the surface modification of polytetrafluoroethylene. Polymer 37, 1377 (1996).

    Article  CAS  Google Scholar 

  12. S.D. Pringle, V.S. Joss, and C. Hones: Ammonia plasma treatment of PTFE under known plasma conditions. Surf. Interface Anal. 24, 821 (1996).

    Article  CAS  Google Scholar 

  13. C.Z. Liu, J.Q. Wu, L.Q. Ren, J. Tong, J.Q. Li, N. Cui, N.M.D. Brown, and B.J. Meenan: Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Mater. Chem. Phys. 85, 340 (2004).

    Article  CAS  Google Scholar 

  14. D.J. Wilson, R.L. Williams, and R.C. Pond: Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment. Surf. Interface Anal. 31, 385 (2001).

    Article  CAS  Google Scholar 

  15. A. Sarani, N. De Geyter, A.Y. Nikiforov, R. Morent, C. Leys, J. Hubert, and F. Reniers: Surface modification of PTFE using an atmospheric pressure plasma jet in argon and argon + CO2. Surf. Coat. Technol. 206, 2226 (2012).

    Article  CAS  Google Scholar 

  16. Z. Kolska, A. Reznickova, V. Hnatowicz, and V. Svorcik: PTFE surface modification by Ar plasma and its characterization. Vacuum 86, 643 (2012).

    Article  CAS  Google Scholar 

  17. D. Youxian, H.J. Griessert, A.W-H. Mau, R. Schmidt, and J. Liesegang: Surface modification of poly(tetrafluoroethylene) by gas plasma treatment. Polymer 32, 1126 (1991).

    Article  Google Scholar 

  18. K. Tanaka and M. Kogoma: Investigation of a new reactant for fluorinated polymer surface treatments with atmospheric pressure glow plasma to improve the adhesive strength. Int. J. Adhes. Adhes. 23, 515 (2003).

    Article  CAS  Google Scholar 

  19. N. Zettsu, H. Itoh, and K. Yamamura: Plasma-chemical surface functionalization of flexible substrates at atmospheric pressure. Thin Solid Films 516, 6683 (2008).

    Article  CAS  Google Scholar 

  20. V. Stelmashuk, H. Biederman, D. Slavinska, J. Zemek, and M. Trchova: Plasma polymer films rf sputtered from PTFE under various argon pressures. Vacuum 77, 131 (2005).

    Article  CAS  Google Scholar 

  21. M.A. Golub, T. Wydeven, and A.L. Johnson: Similarity of plasma-polymerized tetrafluoroethylene and fluoropolymer films deposited by rf sputtering of poly(tetrafluoroethylene). Langmuir 14, 2217 (1998).

    Article  CAS  Google Scholar 

  22. E. Mathias and G.H. Miller: The decompostion of polytetrafluoroethylene in a glow discharge. J. Phys. Chem. 71, 2671 (1967).

    Article  Google Scholar 

  23. M.E. Ryan, J.L. Fonseca, S. Tasker, and J.P.S. Badyal: Plasma polymerization of sputtered poly(tetrafluoroethylene). J. Phys. Chem. 99, 7060 (1995).

    Article  CAS  Google Scholar 

  24. D.J. Wilson, A.J. Eccles, T.A. Steele, R.L. Williams, and R.C. Pond: Surface chemistry and wettability of plasma-treated PTFE. Surf. Interface Anal. 30, 36 (2000).

    Article  CAS  Google Scholar 

  25. H.S. Salapare, F. Guittard, X. Noblin, E. Tagin de Givenchy, F. Celestini, and H.J. Ramos: Stability of the hydrophilic and superhydrophobic properties of oxygen plasma-treated poly(tetrafluoroethylene) surfaces. J. Colloid Interface Sci. 396, 287 (2013).

    Article  CAS  Google Scholar 

  26. H.C. Barshilia and N. Gupta: Superhydrophobic polytetrafluoroethylene surfaces with leaf-like micro-protrusions through Ar + O2 plasma etching process. Vacuum 99, 42 (2014).

    Article  CAS  Google Scholar 

  27. E.A.D. Carbone, N. Boucher, M. Sferrazza, and F. Reniers: How to increase the hydrophobicity of PTFE surfaces using an r.f. atmospheric-pressure plasma torch. Surf. Interface Anal. 42, 1014 (2010).

    Article  CAS  Google Scholar 

  28. S. Trigwell, D. Boucher, and C.I. Calle: Electrostatic properties of PE and PTFE subjected to atmospheric pressure plasma treatment; correlation of experimental results with atomistic modelling. J. Electrost. 65, 401 (2007).

    Article  CAS  Google Scholar 

  29. N.M. Mackie, D.G. Castner, and E.R. Fisher: Characterization of pulsed-plasma-polymerized aromatic films. Langmuir 14, 1227 (1998).

    Article  CAS  Google Scholar 

  30. R. d’Agostino, D.L. Flamm, and O. Auciello: Plasma Deposition, Treatment and Etching of Polymers (Academic Press, San Diego, USA, 1990).

    Google Scholar 

  31. F. Henry, F. Renaux, S. Coppée, R. Lazzaroni, N. Vandencasteele, F. Reniers, and R. Snyders: Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process. Surf. Sci. 606, 1825 (2012).

    Article  CAS  Google Scholar 

  32. Y-R. Wang, W-C. Ma, J-H. Lin, H-H. Lin, C-Y. Tsai, and C. Huang: Deposition of fluorocarbon film with 1,1,1,2-tetrafluoroethane pulsed plasma polymerization. Thin Solid Films 570, 445 (2014).

    Article  CAS  Google Scholar 

  33. P. Favia, G. Cicala, A. Milella, F. Palumbo, P. Rossini, and R. d’Agostino: Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges. Surf. Coat. Technol. 169–170, 609 (2003).

    Article  CAS  Google Scholar 

  34. N.M. Mackie, N.F. Dalleska, D.G. Castner, and E.R. Fisher: Comparison of pulsed and continuous-wave deposition of thin films from saturated fluorocarbon/H2 inductively coupled rf plasmas. Chem. Mater. 9, 349 (1997).

    Article  CAS  Google Scholar 

  35. R. d’Agostino, P. Favia, Y. Kawai, H. Ikegami, N. Sato, and F. Arefi-Khonsari: Advanced Plasma Technology (Wiley-VCH, Germany, 2008).

    Google Scholar 

  36. J. Hopkins and J.P.S. Babyal: Nonequilibrium glow discharge fluorination of polymer surfaces. J. Phys. Chem. 99, 4261 (1995).

    Article  CAS  Google Scholar 

  37. M. Strobel, S. Corn, C.S. Lyons, and G.A. Korba: Plasma fluorination of polyolefins. J. Polym. Sci., Part A: Polym. Chem. 25, 1295 (1987).

    Article  CAS  Google Scholar 

  38. F. Fanelli, F. Fracassi, and R. d’Agostino: Atmospheric pressure PECVD of fluorocarbon coatings from glow dielectric barrier discharges. Plasma Processes Polym. 4, S430 (2007).

    Article  Google Scholar 

  39. F. Fanelli, F. Fracassi, and R. d’Agostino: Deposition and etching of fluorocarbon thin films in atmospheric pressure DBDs fed with Ar–CF4–H2 and Ar–CF4–O2 mixtures. Surf. Coat. Technol. 204, 1779 (2010).

    Article  CAS  Google Scholar 

  40. I.P. Vinogradov and A. Lunk: Spectroscopic diagnostics of DBD in Ar/fluorocarbon mixtures—Correlation between plasma parameters and properties of deposited polymer films. Plasma Processes Polym. 2, 201 (2005).

    Article  CAS  Google Scholar 

  41. I.P. Vinogradov, A. Dinkelmann, and A. Lunk: Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD). Surf. Coat. Technol. 174–175, 509 (2003).

    Article  CAS  Google Scholar 

  42. S.H. Kim, J-H. Kim, B-K. Kang, and H.S. Uhm: Superhydrophobic CFx coating via in-line atmospheric RF plasma of He−CF4−H2. Langmuir 21, 12213 (2005).

    Article  CAS  Google Scholar 

  43. D. Liu, Y. Yin, D. Li, J. Niu, and Z. Fen: Surface modification of materials by dielectric barrier discharge deposition of fluorocarbon films. Thin Solid Films 517, 3656 (2009).

    Article  CAS  Google Scholar 

  44. M. Nagai, O. Takai, and M. Hori: Atmospheric pressure fluorocarbon-particle plasma chemical vapor deposition for hydrophobic film coating. Jpn. J. Appl. Phys. 45, L460 (2006).

    Article  CAS  Google Scholar 

  45. C-T. Hsieh, S-Y. Yang, and J-Y. Lin: Electrochemical deposition and superhydrophobic behavior of ZnO nanorod arrays. Thin Solid Films 518, 4884 (2010).

    Article  CAS  Google Scholar 

  46. J. Wang, A. Li, H. Chen, and D. Chen: Synthesis of biomimetic superhydrophobic surface through electrochemical deposition on porous alumina. J. Bionic Eng. 8, 122 (2011).

    Article  Google Scholar 

  47. B. Balu, J.S. Kim, V. Breedveld, and D.W. Hess: Tunability of the adhesion of water drops on a superhydrophobic paper surface via selective plasma etching. J. Adhes. Sci. Technol. 23, 361 (2009).

    Article  CAS  Google Scholar 

  48. J.C. Shearer, M.J. Fisher, D. Hoogland, and E.R. Fisher: Composite SiO2/TiO2 and amine polymer/TiO2 nanoparticles produced using plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 256, 2081 (2010).

    Article  CAS  Google Scholar 

  49. R.V. Lakshmi, T. Bharathidasan, P. Pera, and B.J. Basu: Fabrication of superhydrophobic and oleophobic sol–gel nanocomposite coating. Surf. Coat. Technol. 206, 3888 (2012).

    Article  CAS  Google Scholar 

  50. N. Valipour Motlagh, J. Sargolzaei, and N. Shahtahmassebi: Super-liquid-repellent coating on the carbon steel surface. Surf. Coat. Technol. 235, 241 (2013).

    Article  CAS  Google Scholar 

  51. A. Charlot, X. Deschanels, and G. Toquer: Submicron coating of SiO2 nanoparticles from electrophoretic deposition. Thin Solid Films 553, 148 (2014).

    Article  CAS  Google Scholar 

  52. H. Ogihara, J. Xie, J. Okagaki, and T. Saji: Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir 28, 4605 (2012).

    Article  CAS  Google Scholar 

  53. Y. Zhang, D. Ge, and S. Yang: Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness. J. Colloid Interface Sci. 423, 101 (2014).

    Article  CAS  Google Scholar 

  54. P. Fabbri, M. Messori, M. Montecchi, F. Pilati, R. Taurino, C. Tonelli, and M. Toselli: Surface properties of fluorinated hybrid coatings. J. Appl. Polym. Sci. 102, 1483 (2006).

    Article  CAS  Google Scholar 

  55. O. Kylian, M. Petr, A. Serov, P. Solar, O. Polonskyi, J. Hanus, A. Chouhourov, and H. Biederman: Hydrophobic and super-hydrophobic coatings based on nanoparticles overcoated by fluorocarbon plasma polymer. Vacuum 100, 57 (2014).

    Article  CAS  Google Scholar 

  56. B.J. Basu and V.D. Kumar: Fabrication of superhydrophobic nanocomposite coatings using polytetrafluoroethylene and silica nanoparticles. ISRN Nanotechnol. 2011, 803910 (2011).

    Article  CAS  Google Scholar 

  57. T. Dufour, J. Hubert, P. Viville, C.Y. Duluard, S. Desbief, R. Lazzaroni, and F. Reniers: PTFE surface etching in the post-discharge of a scanning RF plasma torch: Evidence of ejected fluorinated species. Plasma Processes Polym. 9, 820 (2012).

    Article  CAS  Google Scholar 

  58. J. Hubert, C. Poleunis, A. Delcorte, P. Laha, J. Bossert, S. Lambeets, A. Ozkan, P. Bertrand, H. Terryn, and F. Reniers: Plasma polymerization of C4Cl6 and C2H2Cl4 at atmospheric pressure. Polymer 54, 4085 (2013).

    Article  CAS  Google Scholar 

  59. J. Hubert, N. Vandencasteele, J. Mertens, P. Viville, T. Dufour, C. Barroo, T. Visart de Bocarmé, R. Lazzaroni, and F. Reniers: Chemical and physical effects of the carrier gas on the atmospheric pressure PECVD of fluorinated precursors. Plasma Processes Polym. (2015). doi: https://doi.org/10.1002/ppap.201500025.

  60. J. Hubert, T. Dufour, N. Vandencasteele, S. Desbief, P. Viville, R. Lazzaroni, and F. Reniers: Etching processes of polytetrafluoroethylene surfaces exposed to He and He–O2 atmospheric post-discharges. Langmuir 28, 9466 (2012).

    Article  CAS  Google Scholar 

  61. R.J. Lagow: Fluorinated functionalized polymers. U.S. Patent No. 4076916, 1978.

  62. T. Dufour, J. Hubert, N. Vandencasteele, and F. Reniers: Chemical mechanisms inducing a dc current measured in the flowing post-discharge of an RF He–O2 plasma torch. Plasma Sources Sci. Technol. 21, 045013 (2012).

    Article  Google Scholar 

  63. Z. Gavare, D. Gott, A.V. Pipa, J. Ropcke, and A. Skudra: Determination of the number densities of argon metastables in argon-hydrogen plasma by absorption and self-absorption methods. Plasma Sources Sci. Technol. 15, 391 (2006).

    Article  CAS  Google Scholar 

  64. Y. Li, Z. Chen, and Y-K. Pu: Density measurement of helium metastable states by absorption spectroscopy in an inductively coupled plasma. Plasma Processes Polym. 2, 581 (2005).

    Article  CAS  Google Scholar 

  65. T.L. Sun, L. Feng, X.F. Gao, and L. Jiang: Bioinspired surfaces with special wettability. Acc. Chem. Res. 38, 644 (2005).

    Article  CAS  Google Scholar 

  66. Y. Chen and D.E. Rodak: Is the lotus leaf superhydrophobic? Appl. Phys. Lett. 86, 144101 (2005).

    Article  CAS  Google Scholar 

  67. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16, 5754 (2000).

    Article  CAS  Google Scholar 

  68. N. Vandencasteele, B. Nisol, P. Viville, R. Lazzaroni, D.G. Castner, and F. Reniers: Plasma-modified PTFE for biological applications: Correlation between protein-resistant properties and surface characteristics. Plasma Processes Polym. 7, 661 (2008).

    Article  CAS  Google Scholar 

  69. V. Léveillé and S. Coulombe: Atomic oxygen production and exploration of reaction mechanisms in a He-O2 atmospheric pressure glow discharge torch. Plasma Processes Polym. 3, 587 (2006).

    Article  CAS  Google Scholar 

  70. E. Gonzales, II, M.D. Barankin, P.C. Guschl, and R.F. Hicks: Surface activation of poly(methyl methacrylate) via remote atmospheric pressure plasma. Plasma Processes Polym. 7, 482 (2010).

    Article  CAS  Google Scholar 

  71. F. Massines, G. Gouda, N. Gherardi, M. Duran, and E. Croquesel: The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment. Plasmas Polym. 6, 35 (2001).

    Article  CAS  Google Scholar 

  72. G. Nersisyan and W.G. Graham: Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium. Plasma Sources Sci. Technol. 13, 582 (2004).

    Article  CAS  Google Scholar 

  73. J.P. Youngblood and T.J. McCarthy: Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Macromolecules 32, 6800 (1999).

    Article  CAS  Google Scholar 

  74. M. Horie: Plasma-structure dependence of the growth mechanism of plasma-polymerized fluorocarbon films with residual radicals. J. Vac. Sci. Technol., A 13, 2490 (1995).

    Article  CAS  Google Scholar 

  75. M. Strobel, C.S. Lyons, and K.L. Mittal: Plasma Surface Modification of Polymers: Relevance to Adhesion (VSP, Utrecht, The Netherlands, 1994).

    Google Scholar 

  76. F. Massines, P. Ségur, N. Gherardi, C. Khamphan, and A. Ricard: Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: Diagnostics and modelling. Surf. Coat. Technol. 174–175, 8 (2003).

    Article  CAS  Google Scholar 

  77. A. Ricard: Plasmas réactifs (Société française du vide, Paris, France, 1995).

    Google Scholar 

  78. H. Kobayashi, A.T. Bell, and M. Shen: Plasma polymerization of saturated and unsaturated hydrocarbons. Macromolecules 7, 277 (1974).

    Article  CAS  Google Scholar 

  79. H. Yasuda and T. Hsu: Some aspects of plasma polymerization investigated by pulsed R.F. discharge. J. Polym. Sci., Polym. Chem. Ed. 15, 81 (1977).

    Article  CAS  Google Scholar 

  80. A. Batan, B. Nisol, A. Kakaroglou, I. De Graeve, G. Van Assche, B. Van Mele, H. Terryn, and F. Reniers: The impact of double bonds in the APPECVD of acrylate-like precursors. Plasma Processes Polym. 10, 857 (2013).

    Article  CAS  Google Scholar 

  81. A. Fridman: Plasma Chemistry (Cambridge University Press, New-York, USA, 2008).

    Book  Google Scholar 

  82. B. Eliasson and U. Kogelschatz: Modeling and applications of silent discharge plasmas. IEEE Trans. Plasma Sci. 19, 309 (1991).

    Article  Google Scholar 

  83. E.E. Kunhardt: Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas. IEEE Trans. Plasma Sci. 28, 189 (2000).

    Article  Google Scholar 

  84. E. Simsek, K. Acatay, and Y.Z. Menceloglu: Dual scale roughness driven perfectly hydrophobic surfaces prepared by electrospraying a polymer in good solvent–poor solvent systems. Langmuir 28, 14192 (2012).

    Article  CAS  Google Scholar 

  85. J. Wu, J. Xia, W. Lei, and B-P. Wang: Fabrication of superhydrophobic surfaces with double-scale roughness. Mater. Lett. 64, 1251 (2010).

    Article  CAS  Google Scholar 

  86. W. Barthlott and C. Neinhuis: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1 (1997).

    Article  CAS  Google Scholar 

  87. C. Neinhuis and W. Barthlott: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667 (1997).

    Article  Google Scholar 

  88. W. Ming, D. Wu, R. van Benthem, and G. de With: Superhydrophobic films from raspberry-like particles. Nano Lett. 5, 2298 (2005).

    Article  CAS  Google Scholar 

  89. F. Fanelli, A.M. Mastrangelo, and F. Fracassi: Aerosol-assisted atmospheric cold plasma deposition and characterization of superhydrophobic organic–inorganic nanocomposite thin films. Langmuir 30, 857 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was part of the I.A.P (Interuniversity Attraction Pole) programs “PSI _ Physical Chemistry of Plasma Surface Interactions—IAP-VII/12, P7/34—financially supported by the Belgian Federal Office for Science Policy (BELSPO). This work was also financially supported by the FNRS (Belgian National Fund for Scientific Research) for an “Aspirant Grant (FRFC Grant No. 2.4543.04)”. Research in Mons is also supported by the Région Wallonne/European Commission FEDER program (SMARTFILM project) and FNRS-FRFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Reniers.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubert, J., Mertens, J., Dufour, T. et al. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma. Journal of Materials Research 30, 3177–3191 (2015). https://doi.org/10.1557/jmr.2015.279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.279

Navigation