Skip to main content
Log in

Small scale mechanical testing of irradiated materials

  • Invited Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Small specimen testing techniques have a long history in nuclear material research due to the limitations posed by nuclear facilities. The limited space in reactors and the fact that the samples are oftentimes radioactive in addition to the increasing need to obtain mechanical properties from ion beam irradiated samples require small specimen mechanical testing. With the application of modern focused ion beam sample preparation techniques and the enhancement of nanoindentation instruments, the size scale has been moved to even smaller scales and new geometries. Micrometer and even nanometer size samples are feasible, but raise the question of comparability to large scale properties for engineering applications. In this review, we summarize available small scale materials testing techniques and potential shortcomings based on examples from the literature, as well as introduce novel experimental approaches conducted using microcompression testing, microbend bar testing, and nanoindentation at ambient and nonambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. E.P. Wigner: Theoretical physics in the metallurgical laboratory of Chicago. J. Appl. Phys. 17(11), 857 (1946).

    Article  Google Scholar 

  2. G.J. Dienes: Radiation effects in solids. Annu. Rev. Nucl. Sci. 2, 187–220 (1953).

    Article  CAS  Google Scholar 

  3. S.J. Zinkle: Fusion materials science: Overview of challenges and recent progress. Phys. Plasmas 12, 058101 (2005).

    Article  CAS  Google Scholar 

  4. S.J. Zinkle: Advanced materials for fusion technology. Fusion Eng. Des. 74, 31–40 (2005).

    Article  CAS  Google Scholar 

  5. S.J. Zinkle and G.S. Was: Materials challenges in nuclear energy. Acta Mater. 61, 735–758 (2013).

    Article  CAS  Google Scholar 

  6. P. Yvon and F. Carre: Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 31, 217–222 (2009).

    Article  CAS  Google Scholar 

  7. K.L. Murty and I. Charit: Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 383, 189–195 (2008).

    Article  CAS  Google Scholar 

  8. V. Barabash, S. Fabritsiev, G. Kalinin, S. Zinkle, A. Rowcliffe, J-W. Rensman, A.A. Tavassoli, P. Marmy, P.J. Karditsas, F. Gillemot, and M. Akiba: Materials challenges for ITER—Current status and future activities. J. Nucl. Mater. 367–370, 21–32 (2007).

    Article  CAS  Google Scholar 

  9. T. Allen, J. Busby, M. Meyer, and D. Petti: Materials challenges for nuclear systems. Mater. Today 13, 14–23 (2010).

    Article  CAS  Google Scholar 

  10. H-K. Zhang, Z. Yao, G. Morin, and M. Griffiths: TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750 J. J. Nucl. Mater. 451, 88–96 (2014).

    Article  CAS  Google Scholar 

  11. E. Hamase, M. Saito, H. Sagara, and C.Y. Han: Long-life fast breeder reactor with highly protected Pu breeding by introducing axial inner blanket and minor actinides. Ann. Nucl. Energy 44, 87–102 (2012).

    Article  CAS  Google Scholar 

  12. N. Bailey, E. Sterger, M. Toloczko, and P. Hosemann: Initial APT analysis of irradiated MA957. Microsc. Microanal. 18(Suppl. 2), 1418–1419 (2012).

    Article  Google Scholar 

  13. O. Anderoglu, J. Van den Bosch, P. Hosemann, E. Stergar, B.H. Sencer, D. Bhattacharyya, R. Dickerson, P. Dickerson, M. Hartl, and S.A. Maloy: Phase stability of an HT-9 duct irradiated in FFTF. J. Nucl. Mater. 430, 194–204 (2012).

    Article  CAS  Google Scholar 

  14. M.B. Toloczko, F.A. Garner, and C.R. Eiholzer: Irradiation creep and swelling of the US fusion heats of HT9 and 9Cr-1Mo to 208 dpa at ∼ 400°C. J. Nucl. Mater. 212–215, 604–607 (1994).

    Article  Google Scholar 

  15. F.A. Garner and D.L. Porter: Irradiation creep and swelling of AISI 316 to exposures of 130 dpa at 385–400 °C. J. Nucl. Mater. 155–157, 1006–1013 (1988).

    Article  Google Scholar 

  16. D.S. Gelles: Microstructural examination of several commercial alloys neutron irradiated to 100 dpa. J. Nucl. Mater. 148, 136–144 (1987).

    Article  CAS  Google Scholar 

  17. P. Hosemann: Studying radiation damage in structural materials by using ion accelerators. Rev. Accel. Sci. Technol. 4, 161–182 (2011).

    Article  Google Scholar 

  18. D. Kiener, A. Minor, S.A. Maloy, and P. Hosemann: Application of small scale testing to investigate ion beam irradiated materials. J. Mater. Res. 27, 2724–2736 (2012).

    Article  CAS  Google Scholar 

  19. G.S. Was: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2007). ISBN 978-3-540-49472-0.

    Google Scholar 

  20. G.L. Kulcinski, J.L. Brimhall, and H.E. Kissinger: Production of voids in nickel with high energy selenium ions. J. Nucl. Mater. 40, 166–174 (1971).

    Article  CAS  Google Scholar 

  21. J.W. Corbett, J.M. Denny, M.O. Fiske, and R.M. Walker: Electron irradiation of copper near 10°K. Phys. Rev. 108, 954 (1957).

    Article  CAS  Google Scholar 

  22. J.W. Corbett, R.B. Smith, and R.M. Walker: Discrete recovery spectrum below 65°K in irradiated copper. Phys. Rev. 114, 1452, 1460 (1958).

    Google Scholar 

  23. T. Tanaka, K. Oka, S. Ohnuki, S. Yamashita, T. Suda, S. Watanabe, and E. Wakai: Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe–Cr ferritic alloys. J. Nucl. Mater. 329–333, 294–298 (2004).

    Article  CAS  Google Scholar 

  24. A. Kohyama, Y. Katoh, M. Ando, and K. Jimbo: A new multiple beams–material interaction research facility for radiation damage studies in fusion materials. Fusion Eng. Des. 51–52, 789–795 (2000).

    Article  Google Scholar 

  25. T. Yamamoto, Y. Wu, G.R. Odette, K. Yabuuchi, S. Kondo, and A. Kimura: A dual ion irradiation study of helium–dpa interactions on cavity evolution in tempered martensitic steels and nanostructured ferritic alloys. J. Nucl. Mater. 449, 190–199 (2014).

    Article  CAS  Google Scholar 

  26. IAEA Post irradiation examination database. https://infcis.iaea.org/PIE/PIEMain.asp?Order=1&RPage=1&Page=1&RightP=List.

  27. W.C. Oliver and G.M. Pharr: An improved technique to determine hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  28. A.C. Fischer-Cripps: Nanoindentation (Springer, New York, 2004). ISBN: 978-1-4419-9871-2.

    Book  Google Scholar 

  29. P. Hosemann, D. Kiener, Y. Wang, and S.A. Maloy: Issues to consider using nano indentation on low energy ion implanted materials. J. Nucl. Mater. 425, 136–139 (2012).

    Article  CAS  Google Scholar 

  30. P. Dayal, D. Bhattacharyya, W.M. Mook, E.G. Fu, Y-Q. Wang, D.G. Carr, O. Anderoglu, N.A. Mara, A. Misra, R.P. Harrison, and L. Edwards: Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys. J. Nucl. Mater. 438(1–3), 108–115 (2013).

    Article  CAS  Google Scholar 

  31. C.D. Hardie and S.G. Roberts: Nanoindentation of model Fe–Cr alloys with self-ion irradiation. J. Nucl. Mater. 433, 17–179 (2013).

    Article  CAS  Google Scholar 

  32. C.D. Hardie, C.A. Williams, S. Xu, and S.G. Roberts: Effects of irradiation temperature and dose rate on the mechanical properties of self-ion implanted Fe and Fe–Cr alloys. J. Nucl. Mater. 439, 33–40 (2013).

    Article  CAS  Google Scholar 

  33. C-L. Chen, A. Richter, R. Kögler, and G. Talut: Dual beam irradiation of nanostructured FeCrAl oxide dispersion strengthened steel. J. Nucl. Mater. 412, 350–358 (2011).

    Article  CAS  Google Scholar 

  34. C. Heintze, F. Berger, R. Koegler, and R. Lindau: The influence of helium and ODS on the irradiation-induced hardening of Eurofer 97 at 300°C. Adv. Sci. Technol. 73, 124–129 (2010).

    Article  CAS  Google Scholar 

  35. Y. Yang, S. Kang, C. Zhang, and J. Jang: Nanoindentation on an oxide dispersion strengthened steel and a ferritic/martensitic steel implanted with He ions. J. Nucl. Mater. 455, 325–329 (2014).

    Article  CAS  Google Scholar 

  36. P.M. Rice and R.E. Stoller: The effect of solutes on defect distributions and hardening in ion-irradiated model ferritic alloys. J. Nucl. Mater. 244, 219–226 (1997).

    Article  CAS  Google Scholar 

  37. P.M. Rice, R.E. Stoller, B.N. Lucas, and W.C. Oliver: Microstructural and mechanical property changes in model Fe-Cu alloys. Mater. Res. Soc. Proc. 373, 149 (1995).

    Article  CAS  Google Scholar 

  38. P. Hosemann, J.G. Swadener, D. Kiener, G.S. Was, S.A. Maloy, and N. Li: An exploratory study to determine applicability of nano-hardness and micro-compression measurements for yield stress estimation. J. Nucl. Mater. 375, 135–143 (2008).

    Article  CAS  Google Scholar 

  39. L.L. Snead, S.J. ZinkIe, and D. Steiner: Radiation induced microstructure and mechanical property evolution of SiC/C/SiC composite materials. J. Nucl. Mater. 191–194, 560–565 (1992).

    Article  Google Scholar 

  40. A. Reichardt, A. Lupinacci, J. Kacher, Z. Jiao, P. Chou, M. Abad, A. Minor, and P. Hosemann: Development of small scale mechanical testing techniques on ion beam irradiated 304 SS. In Proceedings of Fontevraud 8—Contribution of Materials Investigations and Operating Experience to LWRs’ Safety, Performance and Reliability France, Avignon, September, 2013.

  41. L. Xiaodong and B. Bharat: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002).

    Article  Google Scholar 

  42. B.N. Lucas, W.C. Oliver, and J.E. Swindeman: The dynamics of frequency-specific, depth-sensing indentation testing. Fundamentals of Nanoindentation and Nanotribology. MRS Symp Proc. 522, 3–14 (1998).

    Article  CAS  Google Scholar 

  43. C. Shin, H-H. Jin, and M-W. Kim: Evaluation of the depth-dependent yield strength of a nanoindented ion-irradiated Fe–Cr model alloy by using a finite element modeling. J. Nucl. Mater. 392, 476–481 (2009).

    Article  CAS  Google Scholar 

  44. R. Kasada, Y. Takayama, K. Yabuuchi, and A. Kimura: A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques. Fusion Eng. Des. 86, 2658–2661 (2011).

    Article  CAS  Google Scholar 

  45. M. Roldán, P. Fernández, J. Rams, D. Jiménez-Rey, C.J. Ortiz, and R. Vila: Effect of helium implantation on mechanical properties of EUROFER97 evaluated by nanoindentation. J. Nucl. Mater. 448, 301–309 (2014).

    Article  CAS  Google Scholar 

  46. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken: Nanoindentation strain rate jump tests for determining the local strain rate sensitivity of nc Ni and UFG Al. J. Mater. Res. 26, 1421 (2011).

    Article  CAS  Google Scholar 

  47. N. Huber, E. Tyulyukovskiy, H-C. Schneider, R. Rolli, and M. Weick: An indentation system for determination of viscoplastic stress–strain behavior of small metal volumes before and after irradiation. J. Nucl. Mater. 377, 352–358 (2008).

    Article  CAS  Google Scholar 

  48. K. Shinohara, G.E. Lucas, and G.R. Odette: Shear punch and ball micro hardness measurements of 14 MeV neutron irradiation hardening in five metals. J. Nucl. Mater. 133–134, 326–331 (1985).

    Article  Google Scholar 

  49. I. Sacksteder and H-C. Schneider: Development of an instrumented indentation device for further characterization of irradiated steels at high temperature. Fusion Eng. Des. 86, 2565–2568 (2011).

    Article  CAS  Google Scholar 

  50. N.M. Everitt, M.I. Davies, and J.F. Smith: High temperature nanoindentation—The importance of isothermal contact. Philos. Mag. 91, 1221 (2011).

    Article  CAS  Google Scholar 

  51. J.M. Wheeler, P. Brodard, and J. Michler: Elevated temperature, in situ indentation with calibrated contact temperatures. Philos. Mag. 92, 3128–3141 (2012).

    Article  CAS  Google Scholar 

  52. Z.C. Duan and A.M. Hodge: High-temperature nanoindentation: New developments and ongoing challenges. JOM 61, 32–36 (2009).

    Article  Google Scholar 

  53. B.D. Beaker and J.F. Smith: High-temperature nanoindentation testing of fused silica and other materials. Philos. Mag. A 82, 2179–2186 (2002).

    Article  Google Scholar 

  54. J.M. Wheeler and J. Michler: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84, 045103 (2013).

    Article  CAS  Google Scholar 

  55. J.M. Wheeler, V. Maier, K. Durst, M. Göken, and J. Michler: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng., A 585, 108–113 (2013).

    Article  CAS  Google Scholar 

  56. B.D. Beake, G.A. Bell, S.R. Goodes, N.J. Pickford, and J.F. Smith: Improved nanomechanical test techniques for surface engineered materials. Surf. Eng. 2637–49 (2010).

    Article  CAS  Google Scholar 

  57. S. Korte, R.J. Stearn, J.M. Wheeler, and W.J. Clegg: High temperature microcompression and nanoindentation in vacuum. J. Mater. Res. 27, 167 (2012).

    Article  CAS  Google Scholar 

  58. J.T. Busby, M.C. Hash, and G.S. Was: The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 336, 267–278 (2005).

    Article  CAS  Google Scholar 

  59. A. Lupinacci, K. Chen, Y. Li, M. Kunz, Z. Jiao, G.S. Was, M. Abad, A.M. Minor, and P. Hosemann: Characterization of ion beam irradiated 304 stainless steel utilizing nanoindentation and Laue microdiffraction. J. Nucl. Mater. 458, 70–76 (2015).

    Article  CAS  Google Scholar 

  60. A. Lupinacci, P. Hosemann, A. Minor, and A. Shapiro: In-situ SEM characterization of fracture behavior. Microsc. Microanal. 18(Suppl. 2), 792–793 (2012).

    Article  Google Scholar 

  61. A. Lupinacci, J. Kacher, A. Eilenberg, A.A. Shapiro, P. Hosemann, and A.M. Minor: Cryogenic in situ microcompression testing of Sn. Acta Mater. 78, 56–64 (2014).

    Article  CAS  Google Scholar 

  62. S-W. Lee, L. Meza, and J.R. Greer: Cryogenic nanoindentation size effect in [0 0 1]-oriented face-centered cubic and body centered cubic single crystals. Appl. Phys. Lett. 103(10), 101906 (2013).

    Article  CAS  Google Scholar 

  63. V. Maier, B. Merle, M. Göken, and K.J. Durst: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28(9), 1177 (2013).

    Article  CAS  Google Scholar 

  64. A.R. Geranmayeh, R. Mahmudi, F. Khalatbari, N. Kashi, and G. Nayyeri: Indentation creep of Lead-Free Sn-5Sb solder alloy with 1.5 wt% Ag and Bi additions. J. Electron. Mater. 43, 717–723 (2014).

    Article  CAS  Google Scholar 

  65. A. El-Bediwi, A.R. Lashin, M. Mossa, and M. Kamal: Indentation creep and mechanical properties of quaternary Sn–Sb based alloys. Mater. Sci. Eng., A 528, 3568–3572 (2011).

    Article  CAS  Google Scholar 

  66. Z. Huang, A. Harris, S.A. Maloy, and P. Hosemann: Nanoindentation creep study on an ion beam irradiated oxide dispersion strengthened alloy. J. Nucl. Mater. 451, 162–167 (2014).

    Article  CAS  Google Scholar 

  67. X.Y. Zhu, X.J. Liu, F. Zenf, and F. Pan: Size dependence of creep behavior in nanoscale Cu/Co multilayer thin films. J. Alloys Compd. 506, 434–440 (2010).

    Article  CAS  Google Scholar 

  68. A.C. Fischer-Cripps: A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng., A 38574–82 (2004).

    Article  CAS  Google Scholar 

  69. S.A. Syed Asif and J.B. Pethica: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76(6), 1105–1118 (1997).

    Article  Google Scholar 

  70. M. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and Crystal Plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  71. C. Shin, H.H. Jin, W. Kim, and J. Park: Mechanical properties and deformation of cubic silicon carbide micropillars in compression at room temperature. J. Am. Ceram. Soc. 95(9), 2944–2950 (2012).

    Article  CAS  Google Scholar 

  72. C. Shin, H.H. Jin, H. Sung, D-J. Kim, Y.S. Choi, and K. Oh: Evaluation of irradiation effects on fracture strength of silicon carbide using micropillar compression tests. Exp. Mech. 53(4), 687–697 (2013).

    Article  CAS  Google Scholar 

  73. M.J. Burek and J.R. Greer: Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett. 10, 69–76 (2010).

    Article  CAS  Google Scholar 

  74. G. Lee, J-Y. Kim, A.S. Budiman, N. Tamura, M. Kunz, K. Chen, M.J. Burek, J.R. Greer, and T.Y. Tsui: Fabrication, structure and mechanical properties of indium nanopillars. Acta Mater. 58, 1361–1368 (2010).

    Article  CAS  Google Scholar 

  75. H. Bei, S. Shim, G.M. Pharr, and E.P. George: Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762–4770 (2008).

    Article  CAS  Google Scholar 

  76. D. Kiener, Z. Zhang, S. Šturm, S. Cazottes, P.J. Imrich, C. Kirchlechner, and G. Dehm: Advanced nanomechanics in the TEM: Effects of thermal annealing on FIB prepared Cu samples. Philos. Mag. 92(25–27), 3269–3289 (2012).

    Article  CAS  Google Scholar 

  77. D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng., A 459, 262–272 (2007).

    Article  CAS  Google Scholar 

  78. K.E. Knipling, D.J. Rowenhorst, R.W. Fonda, and G. Spanos: Effects of focused ion beam milling on austenite stability in ferrous alloys. Mater. Charact. 61, 1–6 (2010).

    Article  CAS  Google Scholar 

  79. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115–119 (2007).

    Article  CAS  Google Scholar 

  80. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).

    Article  CAS  Google Scholar 

  81. D. Kiener, C. Motz, and G. Dehm: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505, 79 (2009).

    Article  CAS  Google Scholar 

  82. D. Kiener and A.M. Minor: Achieving the ideal strength in annealed molybdenum nanopillars. Acta Mater. 59, 1328 (2011).

    Article  CAS  Google Scholar 

  83. B.E. Schuster, Q. Wei, H. Zhang, and K.T. Ramesh: The design of accurate micro-compression experiments. Appl. Phys. Lett. 88, 103112 (2006).

    Article  CAS  Google Scholar 

  84. M.D. Uchic and D.M. Dimiduk: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng., A 400–401, 268–278 (2005).

    Article  CAS  Google Scholar 

  85. T. Masuzawa: State of the art of micromachining. CIRP Ann. 49, 473 (2000).

    Article  Google Scholar 

  86. B. Nagamani Jaya and Md. Zafir Alam: Small-scale mechanical testing of materials: A review & case study. Curr. Sci. 105, 25 (2013).

    Google Scholar 

  87. O. Kraft, P.A. Gruber, R. Moenig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293–317 (2010).

    Article  CAS  Google Scholar 

  88. G. Dehm: Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity. Prog. Mater. Sci. 54, 664 (2009).

    Article  CAS  Google Scholar 

  89. M.D. Uchic, P.A. Shade, and D. Dimiduk: Annu. Rev. Mater. Res. 39, 361 (2009).

    Article  CAS  Google Scholar 

  90. S.S. Brenner: Growth and properties of “whiskers”. Science 128, 568–575 (1958).

    Article  Google Scholar 

  91. W.D. Nix: Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39, 545–554 (1998).

    Article  CAS  Google Scholar 

  92. A.M. Minor, E.T. Lilleodden, M. Jin, E.A. Stach, D.C. Chrzan, and J.W. Morris: Room temperature dislocation plasticity in silicon. Philos. Mag. 85, 323–330 (2005).

    Article  CAS  Google Scholar 

  93. D. Ge, A.M. Minor, E.A. Stach, and J.W. Morris: Size effects in the nanoindentation of silicon at ambient temperature. Philos. Mag. 86, 4069–4080 (2006).

    Article  CAS  Google Scholar 

  94. D.M. Dimiduk, C. Woodward, R. LeSar, and M.D. Uchic: Scale-free intermittent flow in crystal plasticity. Science 312, 1188–1190 (2006).

    Article  CAS  Google Scholar 

  95. J.R. Greer and W.D. Nix: Size dependence in mechanical properties of gold at the micron scale in the absence of strain gradients. Appl. Phys. A: Mater. Sci. Process. 90, 203 (2008).

    Article  CAS  Google Scholar 

  96. C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron au columns. Philos. Mag. 86, 5567–5579 (2006).

    Article  CAS  Google Scholar 

  97. C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, and E. Arzt: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319–329 (2008).

    Article  CAS  Google Scholar 

  98. D.S. Gianola and C. Eberl: Micro- and nanoscale tensile testing of materials. JOM 61, 24–35 (2009).

    Article  Google Scholar 

  99. S. Shim, H. Bei, E.P. George, and G.M. Pharr: A different type of indentation size effect. Scr. Mater. 59, 1095–1098 (2008).

    Article  CAS  Google Scholar 

  100. S. Shim, H. Bei, M.K. Miller, G.M. Pharr, and E.P. George: Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater. 57(2), 503–510 (2009).

    Article  CAS  Google Scholar 

  101. J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005).

    Article  CAS  Google Scholar 

  102. D. Jang and J.R. Greer: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Scr. Mater. 64, 77 (2011).

    Article  CAS  Google Scholar 

  103. X.W. Gu, C.N. Loynachan, Z. Wu, Y-W. Zhang, D.J. Srolovitz, and J.R. Greer: Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Lett. 12, 6385 (2012).

    Article  CAS  Google Scholar 

  104. C. Shin, S. Lim, H.H. Jin, P. Hosemann, and J. Kwon: Specimen size effects on the weakening of a bulk metastable austenitic alloy. Mater. Sci. Eng., A 622, 67–75 (2015).

    Article  CAS  Google Scholar 

  105. B. Yang, C. Motz, M. Rester, and G. Dehm: Yield stress influenced by the ratio of wire diameter to grain size—A competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires. Philos. Mag. 92, 3243 (2012).

    Article  CAS  Google Scholar 

  106. X.X. Chen and A.H.W. Ngan: Specimen size and grain size effects on tensile strength of Ag microwires. Scripta Mater. 64, 717–720 (2011).

    Article  CAS  Google Scholar 

  107. D. Kiener, P. Hosemann, S.A. Maloy, and A.M. Minor: In situ nanocompression testing of irradiated copper. Nat. Mater. 10, 608–613 (2011).

    Article  CAS  Google Scholar 

  108. M.B. Lowry, D. Kiener, M.M. Le Blanc, C. Chisholm, J.N. Florando, J.W. Morris, and A.M. Minor: Achieving the ideal strength in annealed molybdenum nanopillars. Acta Mater. 58, 5160 (2010).

    Article  CAS  Google Scholar 

  109. A.S. Schneider, D. Kiener, C.M. Yakacki, H.J. Maier, P.A. Gruber, N. Tamura, M. Kunz, A.M. Minor, and C.P. Frick: Influence of bulk pre-straining on the size effect in nickel compression pillars. Mater. Sci. Eng., A 559, 147 (2013).

    Article  CAS  Google Scholar 

  110. B. Girault, A.S. Schneider, C.P. Frick, and E. Arzt: Strength effects in micropillars of a dispersion strengthened superalloy. Adv. Eng. Mater. 12, 385 (2010).

    Article  CAS  Google Scholar 

  111. E.T. Lilleodden and W.D. Nix: Microstructural length-scale effects in the nanoindentation behavior of thin gold films. Acta Mater. 54, 1583 (2006).

    Article  CAS  Google Scholar 

  112. E. Arzt: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 (1998).

    Article  CAS  Google Scholar 

  113. M.A. Pouchon, J. Chen, R. Ghisleni, J. Michler, and W. Hoffelener: Characterization of irradiation damage of ferritic ODS, alloys with advanced micro-sample methods. Exp. Mech. 50, 79–84 (2010).

    Article  CAS  Google Scholar 

  114. P. Hosemann, Y. Dai, E. Stergar, H. Leitner, E. Olivas, A.T. Nelson, and S.A. Maloy: Large and small scale materials testing of HT-9 irradiated in the STIP irradiation program. Exp. Mech. 51, 1095–1102 (2011).

    Article  CAS  Google Scholar 

  115. N. Li, N.A. Mara, Y.Q. Wang, M. Nastasi, and A. Misra: Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles. Scr. Mater. 64, 974–977 (2011).

    Article  CAS  Google Scholar 

  116. E.M. Grieveson, D.E.J. Armstrong, S. Xu, and S.G. Roberts: Compression of self-ion implanted iron micropillars. J. Nucl. Mater. 430, 119–124 (2012).

    Article  CAS  Google Scholar 

  117. P. Landau, Q. Guo, P. Hosemann, Y. Wang, and J.R. Greer: Deformation of as-fabricated and helium implanted 100nm-diameter iron nano-pillars. Mater. Sci. Eng., A 612, 316–325 (2014).

    Article  CAS  Google Scholar 

  118. Q. Guo, P. Landau, P. Hosemann, Y. Wang, and J.R. Greer: Helium implantation effects on the compressive response of Cu nanopillars. Small 9, 691–697 (2012).

    Article  CAS  Google Scholar 

  119. R. Soler, J.M. Molina-Aldareguia, J. Segurado, J. Llorca, R.I. Merino, and V.M. Orera: Micropillar compression of LiF [111] single crystals: Effect of size, ion irradiation and misorientation. Int. J. Plast. 36, 50–63 (2012).

    Article  CAS  Google Scholar 

  120. S. Korte and W.J. Clegg: Micropillar compression of ceramics at elevated temperatures. Scr. Mater. 60, 807 (2009).

    Article  CAS  Google Scholar 

  121. S. Korte, J.S. Barnard, R.J. Stearn, and W.J. Clegg: Deformation of silicon–insights from microcompression testing at 25–500 °C. Int. J. Plast. 27, 1853 (2011).

    Article  CAS  Google Scholar 

  122. J.M. Wheeler, C. Niederberger, C. Tessarek, S. Christiansen, and J. Michler: Extraction of plasticity parameters of GaN with high temperature, in situ micro-compression. Int. J. Plast. 40, 140–151 (2013).

    Article  CAS  Google Scholar 

  123. S. Ozerinc, R.S. Averback, and W.P. King: In situ creep measurements on micropillar samples during heavy ion irradiation. J. Nucl. Mater. 451, 104–110 (2014).

    Article  CAS  Google Scholar 

  124. D. Frazer, N. Bailey, and P. Hosemann: Unpublished results.

  125. D. Kiener, W. Grossinger, G. Dehm, and R. Pippan: A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580–592 (2008).

    Article  CAS  Google Scholar 

  126. D. Kiener, P. Kaufmann, and A.M. Minor: Strength, hardening, and failure observed by in situ tem tensile testing. Adv. Eng. Mater. 14, 960–967 (2012).

    Article  CAS  Google Scholar 

  127. D. Kiener and A.M. Minor: Source truncation and exhaustion: Insights from quantitative in situ TEM tensile testing. Nano Lett. 11, 3816–3820 (2011).

    Article  CAS  Google Scholar 

  128. J-Y. Kim, D. Jang, and J.R. Greer: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355–2363 (2010).

    Article  CAS  Google Scholar 

  129. P. Landau, Q. Guo, K. Hattar, and J.R. Greer: The effect of He implantation on the tensile properties and microstructure of Cu/Fe nano-bicrystals. Adv. Funct. Mater. 23, 1281–1288 (2013).

    Article  CAS  Google Scholar 

  130. K. Fujii and K. Fukuya: Development of micro tensile testing method in an FIB system for evaluating grain boundary strength. Mater. Trans. 52, 20–24 (2011).

    Article  CAS  Google Scholar 

  131. M.A. Haque and M.T.A. Saif: Microscale materials testing using MEMS actuators. Exp. Mech. 43, 248 (2003).

    Article  Google Scholar 

  132. M.A. Haque, H.D. Espinosa, and H.J. Lee: MEMS for in situ testing—Handling, actuation, loading, and displacement measurements. MRS Bull. 35, 375 (2010).

    Article  Google Scholar 

  133. H. Guo, K. Chen, Y. Oh, K. Wang, C. Dejoie, S.A. Syed Asif, O.L. Warren, Z.W. Shan, J. Wu, and A.M. Minor: Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires. Nano Lett. 103207–3213 (2011).

    Article  CAS  Google Scholar 

  134. C. Chisholm, H. Bei, M.B. Lowry, J. Oh, S.A. Syed Asif, O.L. Warren, Z.W. Shan, E.P. George, and A.M. Minor: Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 60, 2258–2264 (2012).

    Article  CAS  Google Scholar 

  135. P. Hosemann, D. Frazer, and A. Lupinacci: Unpublished data2014.

  136. A. Reichardt and D. Bhattacharyya: Private communication.

  137. D. Di Maio and S.G. Roberts: Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J. Mater. Res. 20(2), 299 (2005).

    Article  CAS  Google Scholar 

  138. D.E.J. Armstrong, A.J. Wilkinson, and S.G. Roberts: Measuring anisotropy in Young’s modulus of copper using microcantilever testing. J. Mater. Res. 24, 3268 (2009).

    Article  CAS  Google Scholar 

  139. J. Gong and A.J. Wilkinson: Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams. Acta Mater. 57, 5693–5705 (2009).

    Article  CAS  Google Scholar 

  140. K. Matoy, H. Schönherr, T. Detzel, T. Schöberl, R. Pippan, C. Motz, and G. Dehm: A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518, 247–256 (2009).

    Article  CAS  Google Scholar 

  141. D. Frazer, M.D. Abad, C. Back, C. Deck, and P. Hosemann: Multi-scale characterization of SiC SiC composite materials. In Advanced Composites for Aerospace, Marine, and Land Applications, T. Sano, T.S. Srivatsan and M.W. Paretti, eds. (John Wiley & Sons, Inc., Hoboken, NJ, 2014); 173.

    Google Scholar 

  142. D. Frazer, M.D. Abad, D. Krumwiede, C.A. Back, H.E. Khalifa, C.P. Deck, and P. Hosemann: Localized mechanical property assessment of SiC/SiC composite materials. Composites, Part Ain press doi:https://doi.org/10.1016/j.compositesa.2014.11.008.

  143. P. Hosemann, J.N. Martos, D. Frazer, G. Vasudevamurthy, T.S. Byun, J.D. Hunn, B.C. Jolly, K. Terrani, and M. Okuniewski: Mechanical characteristics of SiC coating layer in TRISO fuel particles. J. Nucl. Mater. 442, 133–142 (2013).

    Article  CAS  Google Scholar 

  144. D. Frazer, P. Hosemann, and P. Peralta: Unpublished results.

  145. C. Eberl, D.S. Gianola, and K.J. Hemker: Mechanical characterization of coatings using microbeam bending and digital image correlation techniques. Exp. Mech. 50, 85–97 (2010).

    Article  CAS  Google Scholar 

  146. M. Legros, D.S. Gianola, and C. Motz: Quantitative in situ mechanical testing. MRS Bull. 35354–360 (2010).

    Article  CAS  Google Scholar 

  147. W.N. Sharpe: Mechanical property measurement at the micro/nano-scale. Strain 44, 20–26 (2008).

    Article  Google Scholar 

  148. P. Hosemann: Unpublished data.

  149. F. Iqbal, J. Ast, M. Göken, and K. Durst: Study of the fracture properties on a small scale by micro-cantilever tests. Acta Mater. 601193 (2012).

    Article  CAS  Google Scholar 

  150. S. Wurster, C. Motz, M. Jenko, and R. Pippan: Micrometer-sized specimen preparation based on ion slicing technique. Adv. Eng. Mater. 12, 61 (2010).

    Article  CAS  Google Scholar 

  151. S. Wurster, C. Motz, and R. Pippan: Characterization of the fracture toughness of micro-sized tungsten single crystal notched specimens. Philos. Mag. 92, 1803 (2012).

    Article  CAS  Google Scholar 

  152. E. Hintsala, J. Jackson, D. Kiener, and W.W. Gerberich: In situ measurements of free-standing, ultra-thin film cracking in bending, MSEA. Exp. Mech. (2015, submitted).

  153. E. Hintsala, D. Kiener, and W.W. Gerberich: Extreme ductility at the nanoscale in Fe-based alloys. Microsc. Microanal. 20(S3), 1876–1877 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Funding was provided by the DOE-NEUP Project No. 13-5161 as well as the I-NERI program and the National Academy Keck Futures Initiative (NAKFI). We particularly appreciate D. Bhattacharyya, D. Frazer, S. Parker, A. Lupinacci, A. Reichardt, N. Bailey, Hi Tin Vo, Z. Huang for providing images and data not published previously to help illustrate the techniques available today. The corresponding author also want to thank Marie Anne Hosemann for quiet support as well as Nicole, Karl, and Ana Hosemann for backup support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hosemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosemann, P., Shin, C. & Kiener, D. Small scale mechanical testing of irradiated materials. Journal of Materials Research 30, 1231–1245 (2015). https://doi.org/10.1557/jmr.2015.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.26

Navigation