Skip to main content
Log in

Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

It is well established that exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. This article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. G.R. Odette, B.D. Wirth, D.J. Bacon, and N.M. Ghoneim: Multiscale-multiphysics modeling of radiation-damaged materials: Embrittlement of pressure vessel steels. MRS Bull. 26, 176 (2001).

    Article  CAS  Google Scholar 

  2. E.E. Bloom: The challenge of developing structural materials for fusion power systems. J. Nucl. Mater. 258–263, 7 (1998).

    Article  Google Scholar 

  3. E.E. Bloom, N. Ghoneim, R. Jone, R. Kurtz, G.R. Odette, A. Rowecliffe, D. Smith, and F.W. Wiffen: Advanced Materials Program, appendix D of the VLT roadmap. (1999). Available at http://vlt.ucsd.edu/.

  4. S.J. Zinkle and N.M. Ghoniem: Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51–52, 55 (2000).

    Article  Google Scholar 

  5. T. Muroga, M. Gasparotto, and S.J. Zinkle: Overview of materials research for fusion reactors. Fusion Eng. Des. 61–62, 13 (2002).

    Article  Google Scholar 

  6. M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, and B.N. Singh: The microstructure and associated tensile properties of irradiated fcc and bcc metals. J. Nucl. Mater. 276, 114 (2000).

    Article  CAS  Google Scholar 

  7. T. Diaz de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, and M.J. Caturla: Multiscale modelling of plastic flow localization in irradiated materials. Nature 406, 871 (2000).

    Article  Google Scholar 

  8. B.D. Wirth, G.R. Odette, J. Marian, L. Ventelon, J.A. Young, and L.A. Zepeda-Ruiz: Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. J. Nucl. Mater. 329–333, 103 (2004).

    Article  CAS  Google Scholar 

  9. G.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry: Computer simulation of point defect properties in dilute Fe–Cu alloy using a many-body interatomic potential. Philos. Mag. A 75, 713 (1997).

    Article  CAS  Google Scholar 

  10. R.E. Stoller, G.R. Odette, and B.D. Wirth: Primary damage formation in bcc iron. J. Nucl. Mater. 251, 49 (1997).

    Article  CAS  Google Scholar 

  11. W.J. Phythian, R.E. Stoller, A.J.E. Foreman, A.F. Calder, and D.J. Bacon: A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J. Nucl. Mater. 223, 245 (1995).

    Article  CAS  Google Scholar 

  12. J.B. Gibson, A.N. Goland, M. Milgram, and G.H. Vineyard: Dynamics of radiation damage. Phys. Rev. 120, 1229 (1960).

    Article  CAS  Google Scholar 

  13. R.S. Averback and T. Diaz de la Rubia: Displacement damage in irradiated metals and semiconductors. Solid State Phys. 51, 281 (1998).

    Article  CAS  Google Scholar 

  14. W. Setyawan, G. Nandipati, K.J. Roch, H.L. Heinisch, B.D. Wirth, and R.J. Kurtz: Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations. J. Nucl. Mater.(2015, in press). doi:https://doi.org/10.1016/j.jnucmat.2014.12.056.

  15. N. Soneda and T. Diaz de la Rubia: Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation. Philos. Mag. A 78, 995 (1998).

    Article  CAS  Google Scholar 

  16. B.D. Wirth, G.R. Odette, D. Maroudas, and G.E. Lucas: Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. J. Nucl. Mater. 276, 33 (1999).

    Article  Google Scholar 

  17. N. Anento, A. Serra, and Y.N. Osetsky: Atomistic study of multi-mechanism diffusion by self-interstitial defects in α-Fe. Model. Simul. Mater. Sci. Eng. 18, 025008 (2010).

    Article  CAS  Google Scholar 

  18. B.D. Wirth, G.R. Odette, and R.E. Stoller: Recent progress toward an integrated multiscale-multiphysics model of reactor pressure vessel embrittlement, in Advances in Materials Theory and Modeling–Bridging over Multiple-length and Time Scales (Mater. Res. Soc. Symp. Proc. 677, San Francisco, CA, 2001) 677–AA5.2.

    Google Scholar 

  19. H.L. Heinisch and B.N. Singh: Stochastic annealing simulation of intracascade defect interactions. J. Nucl. Mater. 251, 77 (1997).

    Article  CAS  Google Scholar 

  20. M.J. Caturla, N. Soneda, E.A. Alonso, B.D. Wirth, and T. Diaz de la Rubia: Comparative study of radiation damage accumulation in Cu and Fe. J. Nucl. Mater. 276, 13 (2000).

    Article  CAS  Google Scholar 

  21. P.R. Monasterio, B.D. Wirth, and G.R. Odette: Kinetic Monte Carlo modeling of cascade aging and damage accumulation in Fe–Cu alloys. J. Nucl. Mater. 361, 127 (2007).

    Article  CAS  Google Scholar 

  22. G. Nandipati, W. Setyawan, H.L. Heinisch, K.J. Roche, R.J. Kurtz, and B.D. Wirth: Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo simulation of tungsten cascade aging. J. Nucl. Mater. (2015, in press). doi: https://doi.org/10.1016/j.nucmat.2014.09.067.

  23. M. Eldrup and B.N. Singh: Void nucleation in fcc and bcc metals: A comparison of neutron irradiated copper and iron. Mater. Sci. Forum 363–365, 79 (2001).

    Article  Google Scholar 

  24. B.D. Wirth, G.R. Odette, P. Asoka-Kumar, R.H. Howell, and P.A. Sterne: Characterization of nanostructural features in irradiated reactor pressure vessel model alloys. In Proceedings of the 10th International Symposium on Environmental Degradation of Materials in Light Water Reactors, G.S. Was ed.; National Association of Corrosion Engineers2002.

  25. G.R. Odette: On mechanisms controlling swelling in ferritic and martensitic alloys. J. Nucl. Mater. 155–157, 921 (1988).

    Article  Google Scholar 

  26. H. Matsui, K. Fukumoto, D.L. Smith, H.M. Chung, W. van Witzenburg, and S.N. Votinov: Status of vanadium alloys for fusion reactors. J. Nucl. Mater. 233–237, 92 (1996).

    Article  Google Scholar 

  27. R. Schaublin, P. Spatig, and M. Victoria: Microstructure assessment of the low activation ferritic/martensitic steel F82H. J. Nucl. Mater. 258–263, 1178 (1998).

    Article  Google Scholar 

  28. A.F. Rowcliffe, J.P. Robertson, R.L. Klueh, K. Shiba, D.J. Alexander, M.L. Grossbeck, and S. Jitsukawa: Fracture toughness and tensile behavior of ferritic–martensitic steels irradiated at low temperatures. J. Nucl. Mater. 258–263, 1275 (1998).

    Article  Google Scholar 

  29. P. Spatig, R. Schaublin, S. Gyger, and M. Victoria: Evolution of the mechanical properties of the F82H ferritic/martensitic steel after 590 MeV proton irradiation. J. Nucl. Mater. 258–263, 1345 (1998).

    Article  Google Scholar 

  30. R. Schaublin, P. Spatig, and M. Victoria: Chemical segregation behavior of the low activation ferritic/martensitic steel F82H. J. Nucl. Mater. 258–263, 1350 (1998).

    Article  Google Scholar 

  31. D.S. Gelles, P.M. Rice, S.J. Zinkle, and H.M. Chung: Microstructural examination of irradiated V–(4–5%)Cr–(4–5%)Ti. J. Nucl. Mater. 258–263, 1380 (1998).

    Article  Google Scholar 

  32. P.M. Rice and S.J. Zinkle: Temperature dependence of the radiation damage microstructure in V–4Cr–4Ti neutron irradiated to low dose. J. Nucl. Mater. 258–263, 1414 (1998).

    Article  Google Scholar 

  33. J. Gazda, M. Meshii, and H.M. Chung: Microstructure of V–4Cr–4Ti alloy after low-temperature irradiation by ions and neutrons. J. Nucl. Mater. 258–263, 1437 (1998).

    Article  Google Scholar 

  34. E.V. van Osch and M.I. De Vries: Irradiation hardening of V–4Cr–4Ti. J. Nucl. Mater. 271–272, 162 (1999).

    Article  Google Scholar 

  35. Y. Candra, K. Fukumoto, A. Kimura, and H. Matsui: Microstructural evolution and hardening of neutron irradiated vanadium alloys at low temperatures in Japan Material Testing Reactor. J. Nucl. Mater. 271–272, 301 (1999).

    Article  Google Scholar 

  36. D.H. Xu, B.D. Wirth, M.M. Li, and M.A. Kirk: Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals. Acta Mater. 60, 4286 (2012).

    Article  CAS  Google Scholar 

  37. D. Xu and B.D. Wirth: Spatially dependent rate theory modeling of thermal desorption spectrometry of helium-implanted iron. Fusion Sci. Technol. 56, 1064 (2009).

    Article  CAS  Google Scholar 

  38. D. Xu and B.D. Wirth: Modeling spatially dependent kinetics of helium desorption in BCC iron following He ion implantation. J. Nucl. Mater. 403, 184 (2010).

    Article  CAS  Google Scholar 

  39. D. Xu, X. Hu, and B.D. Wirth: A phase-cut method for multi-species kinetics: Sample application to nanoscale defect cluster evolution in alpha iron following helium ion implantation. Appl. Phys. Lett. 102, 011904 (2013).

    Article  CAS  Google Scholar 

  40. X. Hu, D. Xu, T.S. Byun, and B.D. Wirth: Modeling of irradiation hardening of iron after low-dose and low-temperature neutron irradiation. Model. Simul. Sci. Eng. 22, 0655002 (2014).

    Article  CAS  Google Scholar 

  41. D. Xu, B.D. Wirth, M. Li, and M.A. Kirk: Defect microstructural evolution in ion irradiated metallic nanofoils: Kinetic Monte Carlo simulation versus cluster dynamics modeling and in situ transmission electron microscopy experiments. Appl. Phys. Lett. 101, 101905 (2012).

    Article  CAS  Google Scholar 

  42. D. Xu, B.D. Wirth, M. Li, and M.A. Kirk: Recent work towards understanding defect evolution in thin molybdenum foils through in situ ion irradiation under TEM and coordinated cluster dynamics modeling. Curr. Opin. Solid State Mater. Sci. 16, 109 (2012).

    Article  CAS  Google Scholar 

  43. M. Li, M.A. Kirk, P.M. Baldo, D. Xu, and B.D. Wirth: Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling. Philos. Mag. 92(16), 2048 (2012).

    Article  CAS  Google Scholar 

  44. C.S. Becquart and B.D. Wirth: Kinetic Monte Carlo simulations of irradiation effects. In Comprehensive Nuclear Materials, Elsevier, 2012, Chapter 1.14.

  45. A.A. Kohnert and B.D. Wirth: Phys. Rev. B (2014, submitted).

  46. A.A. Kohnert: The kinetics of dislocation loop formation in ferritic alloys through the aggregation of irradiation induced defects. Ph.D. Thesis, University of California, Berkeley, 2014.

    Google Scholar 

  47. C.J. Ortiz and M.J. Caturla: Simulation of defect evolution in irradiated materials: Role of intracascade clustering and correlated recombination. Phys. Rev. B 75, 184101 (2007).

    Article  CAS  Google Scholar 

  48. C.J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N.E.B. Cowern, and A. Claverie: A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion implanted silicon. J. Appl. Phys. 96, 4866 (2004).

    Article  CAS  Google Scholar 

  49. M.V. Smoluchowski: A mathematical theory of coagulation kinetics of colloidal solutions. Z. Phys. Chem. 92, 192 (1917).

    Google Scholar 

  50. T.R. Waite: Theoretical treatment of the kinetics of diffusion-limited reactions. Phys. Rev. B 107, 463 (1957).

    Article  CAS  Google Scholar 

  51. H.L. Heinisch, B.N. Singh, and S.I. Golubov: The effects of one-dimensional glide on the reaction kinetics of interstitial clusters. J. Nucl. Mater. 283, 737 (2000).

    Article  Google Scholar 

  52. H.L. Heinisch, H. Trinkaus, and B.N. Singh: Kinetic Monte Carlo studies of the reaction kinetics of crystal defects that diffuse one-dimensionally with occasional transverse migration. J. Nucl. Mater. 367–370, 332 (2007).

    Article  CAS  Google Scholar 

  53. P. Erhart and J. Marian: Calculation of the substitutional fraction of ion-implanted He in an α-Fe target. J. Nucl. Mater. 414, 426 (2011).

    Article  CAS  Google Scholar 

  54. R.E. Stoller, S.I. Golubov, C. Domain, and C.S. Becquart: Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models. J. Nucl. Mater. 382, 77 (2008).

    Article  CAS  Google Scholar 

  55. J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping and Range of Ions in Matter (Pergamon, New York, 1984).

    Google Scholar 

  56. P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev: Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys. Rev. B 76, 054107 (2007).

    Article  CAS  Google Scholar 

  57. A.B. Bortz, M.H. Kalos, and J.L. Lebowitz: New algorithm for Monte-Carlo simulations of Ising spin systems. J. Comp. Phys. 17, 10 (1975).

    Article  Google Scholar 

  58. C.H. Woo and B.N. Singh: Production bias due to clustering of point defects in irradiation-induced cascades. Philos. Mag. A 65, 889 (1992).

    Article  Google Scholar 

  59. K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, and H. Mori: Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956 (2007).

    Article  CAS  Google Scholar 

  60. A.H. Cottrell: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. 62, 49 (1949).

    Article  Google Scholar 

  61. M. Eldrup, B.N. Singh, S.J. Zinkle, T.S. Byun, and K. Farrell: Dose dependence of defect accumulation in neutron irradiated copper and iron. J. Nucl. Mater. 307–311, 912 (2002).

    Article  Google Scholar 

  62. S.J. Zinkle and B.N. Singh: Microstructure of neutron-irradiated iron before and after tensile deformation. J. Nucl. Mater. 351, 269 (2006).

    Article  CAS  Google Scholar 

  63. M. Hernandez-Mayoral, Z. Yao, M.L. Jenkins, and M.A. Kirk: Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88, 2881 (2008).

    Article  CAS  Google Scholar 

  64. Z. Yao, M. Hernandez-Mayoral, M. Jenkins, and M.A. Kirk: Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: Damage evolution in thin-foils at lower doses. Philos. Mag. 88, 2851 (2008).

    Article  CAS  Google Scholar 

  65. Z. Yao, M. Jenkins, M. Hernandez-Mayoral, and M.A. Kirk: The temperature dependence of heavy-ion damage in iron: A microstructural transition at elevated temperatures. Philos. Mag. 90, 4623 (2010).

    Article  CAS  Google Scholar 

  66. C. Topbasi, A.T. Motta, and M.A. Kirk: In situ study of heavy ion induced radiation damage in NF616 (P92) alloy. J. Nucl. Mater. 425, 48 (2012).

    Article  CAS  Google Scholar 

  67. D. Kaoumi, J. Adamson, and M. Kirk: Microstructure evolution of two model ferritic/martensitic steels under in situ ion irradiation at low doses (0–2 dpa). J. Nucl. Mater. 445, 12 (2014).

    Article  CAS  Google Scholar 

  68. M.A. Kirk, P.M. Baldo, A.C. Liu, E.A. Ryan, R.C. Birtcher, Z. Yao, S. Xu, M.L. Jenkins, M. Hernandez-Mayoral, D. Kaoumi, and A.T. Motta: In situ transmission electron microscopy and ion irradiation of ferritic materials. Microsc. Res. Tech. 72, 82 (2009).

    Article  CAS  Google Scholar 

  69. M. Jenkins, Z. Yao, M. Hernndez-Mayoral, and M. Kirk: Damage development in FeCr alloys under heavy-ion irradiation by IVEM. J. Nucl. Mater. 389, 197 (2009).

    Article  CAS  Google Scholar 

  70. M.L. Jenkins, C.A. English, and B.L. Eyre: Heavy-ion irradiation of alpha-iron. Philos. Mag. A 38, 97 (1978).

    Article  CAS  Google Scholar 

  71. C. Topbasi: Microstructural evolution of ferritic-martensitic steels under heavy ion irradiation. Ph.D. Thesis, Pennsylvania State University, 2014.

  72. Y. Satoh and H. Matsui: Obstacles for one-dimensional migration of interstitial clusters in iron. Philos. Mag. 89, 1489 (2009).

    Article  CAS  Google Scholar 

  73. T. Hamaoka, Y. Satoh, and H. Matsui: One-dimensional motion of interstitial clusters in iron-based binary alloys observed using a high-voltage electron microscope. J. Nucl. Mater. 433, 180 (2013).

    Article  CAS  Google Scholar 

  74. K. Arakawa, H. Mori, and K. Ono: Formation process of dislocation loops in iron under irradiations with low-energy helium, hydrogen ions or high-energy electrons. J. Nucl. Mater. 307–311, 272 (2002).

    Article  Google Scholar 

  75. C.C. Fu, J.D. Torre, F. Willaime, J.L. Bocquet, and A. Barbu: Multiscale modeling of defect kinetics in irradiated iron. Nat. Mater. 4, 68 (2005).

    Article  CAS  Google Scholar 

  76. C.C. Fu, F. Willaime, and P. Ordejon: Stability and mobility of mono- and di-interstitials in alpha-Fe. Phys. Rev. Lett. 92, 175503 (2004).

    Article  CAS  Google Scholar 

  77. A.V. Barashev, S.I. Golubov, Y.N. Osetsky, and R.E. Stoller: Reaction kinetics of non-localised particle–trap complexes. Philos. Mag. 90, 897 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank our experimental collaborators, Djamel Kaoumi, Cem Topbasi, and Arthur Motta for helpful discussions and gratefully acknowledge financial support from the U.S. Department of Energy, Office of Fusion Energy Sciences under grant DOE-DE-SC0006661 and the U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy University Programs (NEUP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Wirth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirth, B.D., Hu, X., Kohnert, A. et al. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies. Journal of Materials Research 30, 1440–1455 (2015). https://doi.org/10.1557/jmr.2015.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.25

Navigation