Skip to main content
Log in

In vitro evaluations of electrospun nanofiber scaffolds composed of poly(ɛ-caprolactone) and polyethylenimine

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The work was intended to explore the effect of the widely available cationic polymer polyethylenimine (PEI) on small diameter poly(ɛ-caprolactone) (PCL) blood vessel grafts. PEI was blended with PCL and electrospun into nanofibrous vascular scaffolds. The morphologies, wettabilities, mechanical properties, and biological activities of the PCL/PEI electrospun nanofibers were investigated. It was found that by increasing the content of PEI to 5% within the scaffolds, the fiber diameters decreased from 469.7 ± 212.1 to 282.5 ± 107.1 nm, the water contact angle was reduced from 126.6 ± 1.1° to 27.6 ± 3.9°, while the Young’s modulus increased from 2.0 ± 0.2 to 4.1 ± 0.1 MPa, the suture retention strength increased from 4.2 ± 0.4 to 6.1 ± 0.7 N, and the burst pressure increased from 801.2 ± 14.1 to 926.2 ± 22.8 mmHg. The in vitro evaluations demonstrated that the nanofibers containing 2% PEI promoted the attachment and proliferation of human umbilical vein endothelial cells (HUVECs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. D.G. Seifu, A. Purnama, K. Mequanint, and D. Mantovani: Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 10(7), 410 (2013).

    Article  CAS  Google Scholar 

  2. H. Ma, J. Hu, and P.X. Ma: Polymer scaffolds for small-diameter vascular tissue engineering. Adv. Funct. Mater. 20(17), 2833 (2010).

    Article  CAS  Google Scholar 

  3. R.Y. Kannan, H.J. Salacinski, P.E. Butler, G. Hamilton, and A.M. Seifalian: Current status of prosthetic bypass grafts: A review. J. Biomed. Mater. Res., Part B 74(1), 570 (2005).

    Article  CAS  Google Scholar 

  4. X. Wang, P. Lin, Q. Yao, and C. Chen: Development of small-diameter vascular grafts. World J. Surg. 31(4), 682 (2007).

    Article  Google Scholar 

  5. J.F. Keuren, S.J. Wielders, A. Driessen, M. Verhoeven, M. Hendriks, and T. Lindhout: Covalently-bound heparin makes collagen thromboresistant. Arterioscler., Thromb., Vasc. Biol. 24(3), 613 (2004).

    Article  CAS  Google Scholar 

  6. R.D. Sayers, S. Raptis, M. Berce, and J.H. Miller: Long-term results of femorotibial bypass with vein or polytetrafluoroethylene. Br. J. Surg. 85(7), 934 (1998).

    Article  CAS  Google Scholar 

  7. J. Bujan, N. Garcia-Honduvilla, and J.M. Bellon: Engineering conduits to resemble natural vascular tissue. Biotechnol. Appl. Biochem. 39, 17 (2004).

    Article  CAS  Google Scholar 

  8. S.T. Rashid, B. Fuller, G. Hamilton, and A.M. Seifalian: Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery. FASEB J. 22(6), 2084 (2008).

    Article  CAS  Google Scholar 

  9. R.M. Nerem and D. Seliktar: Vascular tissue engineering. Annu. Rev. Biomed. Eng. 3, 225 (2001).

    Article  CAS  Google Scholar 

  10. E.R. Edelman: Vascular tissue engineering—designer arteries. Circ. Res. 85(12), 1115 (1999).

    Article  CAS  Google Scholar 

  11. N. L’Heureux, S. Paquet, R. Labbe, L. Germain, and F.A. Auger: A completely biological tissue-engineered human blood vessel. FASEB J. 12(1), 47 (1998).

    Google Scholar 

  12. L.E. Niklason, J. Gao, W.M. Abbott, K.K. Hirschi, S. Houser, R. Marini, and R. Langer: Functional arteries grown in vitro. Science 284(5413), 489 (1999).

    Article  CAS  Google Scholar 

  13. J. Hu, X. Sun, H. Ma, C. Xie, Y.E. Chen, and P.X. Ma: Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials 31(31), 7971 (2010).

    Article  CAS  Google Scholar 

  14. M. Lovett, C. Cannizzaro, L. Daheron, B. Messmer, G. Vunjak-Novakovic, and D.L. Kaplan: Silk fibroin microtubes for blood vessel engineering. Biomaterials 28(35), 5271 (2007).

    Article  CAS  Google Scholar 

  15. M. Lovett, G. Eng, J.A. Kluge, C. Cannizzaro, G. Vunjak-Novakovic, and D.L. Kaplan: Tubular silk scaffolds for small diameter vascular grafts. Organogenesis 6(4), 217 (2010).

    Article  Google Scholar 

  16. S.W. Lindsay, T. Konstantinos, S.G. Eun, G.O. Fiorenzo, and L.K. David: Microfabricated porous silk scaffolds for vascularizing engineered tissues. Adv. Funct. Mater. 23(27), 3404 (2013).

    Article  CAS  Google Scholar 

  17. L. Soletti, Y. Hong, J. Guan, J.J. Stankus, M.S. El-Kurdi, W.R. Wagner, and D.A. Vorp: A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 6(1), 110 (2010).

    Article  CAS  Google Scholar 

  18. M.J. McClure, P.S. Wolfe, I.A. Rodriguez, and G.L. Bowlin: Bioengineered vascular grafts: Improving vascular tissue engineering through scaffold design. J. Drug Delivery Sci. Technol. 21(3), 211 (2011).

    Article  CAS  Google Scholar 

  19. M.A. Cleary, E. Geiger, C. Grady, C. Best, Y. Naito, and C. Breuer: Vascular tissue engineering: The next generation. Trends Mol. Med. 18(7), 394 (2012).

    Article  CAS  Google Scholar 

  20. Y. Naito, T. Shinoka, D. Duncan, N. Hibino, D. Solomon, M. Cleary, A. Rathore, C. Fein, S. Church, and C. Breuer: Vascular tissue engineering: Towards the next generation vascular grafts. Adv. Drug Delivery Rev. 63(4–5), 312 (2011).

    Article  CAS  Google Scholar 

  21. S.J. Lee, J. Liu, S.H. Oh, S. Soker, A. Atala, and J.J. Yoo: Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29(19), 2891 (2008).

    Article  CAS  Google Scholar 

  22. S. Wang, Y. Zhang, H. Wang, G. Yin, and Z. Dong: Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Biomacromolecules 10(8), 2240 (2009).

    Article  CAS  Google Scholar 

  23. B. Marelli, A. Alessandrino, S. Fare, G. Freddi, D. Mantovani, and M.C. Tanzi: Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomater. 6(10), 4019 (2010).

    Article  CAS  Google Scholar 

  24. F. Du, H. Wang, W. Zhao, D. Li, D. Kong, J. Yang, and Y. Zhang: Gradient nanofibrous chitosan/poly epsilon-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials 33(3), 762 (2012).

    Article  CAS  Google Scholar 

  25. F. Han, X. Jia, D. Dai, X. Yang, J. Zhao, Y. Zhao, Y. Fan, and X. Yuan: Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Biomaterials 34(30), 7302 (2013).

    Article  CAS  Google Scholar 

  26. M.P. Prabhakaran, J.R. Venugopal, T.T. Chyan, L.B. Hai, C.K. Chan, A.Y. Lim, and S. Ramakrishna: Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng., Part A 14(11), 1787 (2008).

    Article  CAS  Google Scholar 

  27. M.P. Prabhakaran, J. Venugopal, C.K. Chan, and S. Ramakrishna: Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering. Nanotechnology 19(45), 455102 (2008).

    Article  CAS  Google Scholar 

  28. Y. Zhu, C. Gao, X. Liu, and J. Shen: Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3(6), 1312 (2002).

    Article  CAS  Google Scholar 

  29. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner: PEGylated DNA/transferrin-PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6(4), 595 (1999).

    Article  CAS  Google Scholar 

  30. X. Zhou, F.J.F. Laroche, G. Lamers, V. Torraca, P. Voskamp, T. Lu, F. Chu, H.P. Spaink, J.P. Abrahams, and Z. Liu: Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res. 5(10), 703 (2012).

    Article  CAS  Google Scholar 

  31. M.M. Andersson and R. Hatti-Kaul: Protein stabilising effect of polyethyleneimine. J. Biotechnol. 72(1–2), 21 (1999).

    Article  CAS  Google Scholar 

  32. A.R. Vancha, S. Govindaraju, K.V. Parsa, M. Jasti, M. Gonzalez-Garcia, and R.P. Ballestero: Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC Biotechnol. 4, 23 (2004).

    Article  CAS  Google Scholar 

  33. O. Boussif, F. Lezoualch, M.A. Zanta, M.D. Mergny, D. Scherman, B. Demeneix, and J.P. Behr: A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo: Polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92(16), 7297 (1995).

    Article  CAS  Google Scholar 

  34. M.L. Forrest, G.E. Meister, J.T. Koerber, and D.W. Pack: Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm. Res. 21(2), 365 (2004).

    Article  CAS  Google Scholar 

  35. J.H. Kim, P-H. Choung, I.Y. Kim, K.T. Lim, H.M. Son, Y-H. Choung, C-S. Cho, and J.H. Chung: Electrospun nanofibers composed of poly(epsilon-caprolactone) and polyethylenimine for tissue engineering applications. J. Mater. Sci. Eng. B 29(5), 1725 (2009).

    Article  CAS  Google Scholar 

  36. C.M. Vaz, S. van Tuijl, C.V. Bouten, and F.P. Baaijens: Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 1(5), 575 (2005).

    Article  CAS  Google Scholar 

  37. C.E. Ghezzi, B. Marelli, N. Muja, and S.N. Nazhat: Immediate production of a tubular dense collagen construct with bioinspired mechanical properties. Acta Biomater. 8(5), 1813 (2012).

    Article  CAS  Google Scholar 

  38. T. Courtney, M.S. Sacks, J. Stankus, J. Guan, and W.R. Wagner: Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27(19), 3631 (2006).

    CAS  Google Scholar 

  39. S.J. Lee, G.J. Lim, J.W. Lee, A. Atala, and J.J. Yoo: In vitro evaluation of a poly(lactide-co-glycolide)-collagen composite scaffold for bone regeneration. Biomaterials 27(18), 3466 (2006).

    Article  CAS  Google Scholar 

  40. W. Cui, L. Cheng, H. Li, Y. Zhou, Y. Zhang, and J. Chang: Preparation of hydrophilic poly(l-lactide) electrospun fibrous scaffolds modified with chitosan for enhanced cell biocompatibility. Polymer 53(11), 2298 (2012).

    Article  CAS  Google Scholar 

  41. A.G. Mikos, M.D. Lyman, L.E. Freed, and R. Langer: Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue-culture. Biomaterials 15(1), 55 (1994).

    Article  CAS  Google Scholar 

  42. G.E. Amiel, M. Komura, O. Shapira, J.J. Yoo, S. Yazdani, J. Berry, S. Kaushal, J. Bischoff, A. Atala, and S. Soker: Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng. 12(8), 2355 (2006).

    Article  CAS  Google Scholar 

  43. M. Stekelenburg, M.C. Rutten, L.H. Snoeckx, and F.P. Baaijens: Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng., Part A 15(5), 1081 (2009).

    Article  CAS  Google Scholar 

  44. Y.C. Fung: Bioviscoelastic solids: Collagen. In Biomechanics; Mechanical Properties of Living Tissues, Springer, New York, NY, 1999; p. 261.

    Google Scholar 

  45. G. Konig, T.N. McAllister, N. Dusserre, S.A. Garrido, C. Iyican, A. Marini, A. Fiorillo, H. Avila, W. Wystrychowski, K. Zagalski, M. Maruszewski, A.L. Jones, L. Cierpka, L.M. de la Fuente, and N. L’Heureux: Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8), 1542 (2009).

    Article  CAS  Google Scholar 

  46. K. Billiar, J. Murray, D. Laude, G. Abraham, and N. Bachrach: Effects of carbodiimide crosslinking conditions on the physical properties of laminated intestinal submucosa. J. Biomed. Mater. Res. 56(1), 101 (2001).

    Article  CAS  Google Scholar 

  47. P. Oskoui, I. Stadler, and R.J. Lanzafame: A preliminary study of laser tissue soldering as arterial wall reinforcement in an acute experimental aneurysm model. Laser Surg. Med. 32(5), 346 (2003).

    Article  Google Scholar 

  48. S. Sarkar, H.J. Salacinski, G. Hamilton, and A.M. Seifalian: The mechanical properties of infrainguinal vascular bypass grafts: Their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 31(6), 627 (2006).

    Article  CAS  Google Scholar 

  49. D. Seliktar, R.A. Black, R.P. Vito, and R.M. Nerem: Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28(4), 351 (2000).

    Article  CAS  Google Scholar 

  50. P. Tryoen-Toth, D. Vautier, Y. Haikel, J.C. Voegel, P. Schaaf, J. Chluba, and J. Ogier: Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films. J. Biomed. Mater. Res. 60(4), 657 (2002).

    Article  CAS  Google Scholar 

  51. Y.C. Kuo and I.N. Ku: Application of polyethyleneimine-modified scaffolds to the regeneration of cartilaginous tissue. Biotechnol. Prog. 25(5), 1459 (2009).

    Article  CAS  Google Scholar 

  52. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber: Geometric control of cell life and death. Science 276(5317), 1425 (1997).

    Article  CAS  Google Scholar 

  53. H. Zhu, J. Ji, Q. Tan, M.A. Barbosa, and J. Shen: Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules. Biomacromolecules 4(2), 378 (2003).

    Article  CAS  Google Scholar 

  54. U. Hersel, C. Dahmen, and H. Kessler: RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24), 4385 (2003).

    Article  CAS  Google Scholar 

  55. S.H. Ku and C.B. Park: Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 31(36), 9431 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of the Wisconsin Institute for Discovery (WID), the China Scholarship Council, the financial support of the National Nature Science Foundation of China (No. 51073061, No. 21174044), the Guangdong Nature Science Foundation (No. S2013020013855, No. 9151064101000066), and National Basic Research Development Program 973 (No. 2012CB025902) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Fang Peng or Lih-Sheng Turng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, X., Mi, HY., Salick, M.R. et al. In vitro evaluations of electrospun nanofiber scaffolds composed of poly(ɛ-caprolactone) and polyethylenimine. Journal of Materials Research 30, 1808–1819 (2015). https://doi.org/10.1557/jmr.2015.117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.117

Navigation