Skip to main content
Log in

Gamma irradiation resistance of an early age slag-blended cement matrix for nuclear waste encapsulation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Irradiation is one of the characteristic conditions that nuclear wasteforms must withstand to assure integrity during their service life. This study investigates gamma irradiation resistance of an early age slag cement-based grout, which is of interest for the nuclear industry as it is internationally used for encapsulation of low and intermediate level radioactive wastes. The slag cement-based grout withstands a gamma irradiation dose of 4.77 MGy over 256 h without reduction in its compressive strength; however, some cracking of irradiated samples was identified. The high strength retention is associated with the fact that the main hydration product forming in this binder, a calcium aluminum silicate hydrate (C–A–S–H) type gel, remains unmodified upon irradiation. Comparison with a heat-treated sample was carried out to identify potential effects of the temperature rise during irradiation exposure. The results suggested that formation of cracks is a combined effect of radiolysis and heating upon irradiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. M. Atkins and F.P. Glasser: Application of Portland cement-based materials to radioactive waste immobilization. Waste Manage. 12(2), 105 (1992).

    Article  CAS  Google Scholar 

  2. J.H. Sharp, J. Hill, N.B. Milestone, and E.W. Miller: Cementitious systems for encapsulation of intermediate level waste. In Proceedings of ICEM’ 03: The 9th International Conference on Radioactive Waste Management and Environmental Remediation, Oxford, UK, 2003; p. 21.

  3. P.C. Hewlett: Lea’s Chemistry of Cement and Concrete, 4th ed.; Elsevier, 1998.

  4. M.I. Ojavan and W.E. Lee: An Introduction to Nuclear Waste Immobilisation (Elsevier, 2005); pp. 179–200.

  5. P. Soo and L. Milian: The effect of gamma radiation on the strength of Portland cement mortars. J. Mater. Sci. Lett. 20(14), 1345 (2001).

    Article  CAS  Google Scholar 

  6. P. Bouniol and A. Aspart: Disappearance of oxygen in concrete under irradiation: The role of peroxides in radiolysis. Cem. Concr. Res. 28(11), 1669 (1998).

    Article  CAS  Google Scholar 

  7. F. Vodák, K. Trtik, V. Sopko, O. Kapičková, and P. Demo: Effect of γ-irradiation on strength of concrete for nuclear-safety structures. Cem. Concr. Res. 35(7), 1447 (2005).

    Article  Google Scholar 

  8. G. Bar-Nes, A. Katz, Y. Peled, and Y. Zeiri: The combined effect of radiation and carbonation on the immobilization of Sr and Cs ions in cementitious pastes. Mater. Struct. 41, 1563 (2008).

    Article  CAS  Google Scholar 

  9. F. Vodák, V. Vydra, K. Trtík, and O. Kapičková: Effect of gamma irradiation on properties of hardened cement paste. Mater. Struct. 44(1), 101 (2011).

    Article  Google Scholar 

  10. A. Lowinska-Kluge and P. Piszora: Effect of gamma irradiation on cement composites observed with XRD and SEM methods in the range of radiation dose 0–1409 MGy. Acta Phys. Pol., A 114(2), 399 (2008).

    Article  CAS  Google Scholar 

  11. P.E. Pottier and F.P. Glasser: Characterization of Low and Medium-Level Radioactive Waste Forms; Final report-2nd Programme (1980-84); Commission of the European Communities: Luxembourg, 1986.

    Google Scholar 

  12. I. Richardson, G. Groves, and C. Wilding: Effect of γ-radiation on the microstructure and microchemistry of GGBFS/OPC cement blends. In MRS Proceedings, Vol. 176, Cambridge University Press, 1989; p. 31.

  13. S. Curwen and F. Ridley: Generic Report on the Properties of BFS/OPC and PFA/OPC as Encapsulation Matrices for ILW, PETF (89) P40; BNFL, Research and Development Department: Sellafield, 1989; pp. 66.

    Google Scholar 

  14. S.A. Bernal, R. San Nicolas, R.J. Myers, R. Mejía de Gutiérrez, F. Puertas, J.S.J. van Deventer, and J.L. Provis: MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem. Concr. Res. 57, 33 (2014).

    Article  CAS  Google Scholar 

  15. R.J. Kirkpatrick: MAS NMR-spectroscopy of minerals and glasses. Rev. Mineral. 18, 341 (1988).

    CAS  Google Scholar 

  16. K.J.D. MacKenzie, R.H. Meinhold, B.L. Sherriff, and Z. Xu: 27Al and 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence. J. Mater. Chem. 3(12), 1263 (1993).

    Article  CAS  Google Scholar 

  17. M.D. Andersen, H.J. Jakobsen, and J. Skibsted: A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 36(1), 3 (2006).

    Article  CAS  Google Scholar 

  18. R. Taylor, I.G. Richardson, and R.M.D. Brydson: Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag. Cem. Concr. Res. 40(7), 971 (2010).

    Article  CAS  Google Scholar 

  19. B. Lothenbach, T. Matschei, G. Möschner, and F.P. Glasser: Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 38(1), 1 (2008).

    Article  CAS  Google Scholar 

  20. R. Barbarulo, H. Peycelon, and S. Prene: Experimental study and modelling of sulfate sorption on calcium silicate hydrates. Ann. Chim.-Sci. Mat. 28, S5 (2003).

    CAS  Google Scholar 

  21. N.D.M. Evans: Binding mechanisms of radionuclides to cement. Cem. Concr. Res. 38(4), 543 (2008).

    Article  CAS  Google Scholar 

  22. S.L. Poulsen, V. Kocaba, G. Le Saoût, H.J. Jakobsen, K.L. Scrivener, and J. Skibsted: Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions. Solid State Nucl. Magn. Reson. 36(1), 32 (2009).

    Article  CAS  Google Scholar 

  23. M.D. Andersen, H.J. Jakobsen, and J. Skibsted: Incorporation of aluminum in the calcium silicate hydrate (C–S–H) of hydrated Portland cements: A high-field 27Al and 29Si MAS NMR investigation. Inorg. Chem. 42(7), 2280 (2003).

    Article  CAS  Google Scholar 

  24. L. Alarcon-Ruíz, G. Platret, E. Massieu, and A. Ehrlacher: The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 35(3), 609 (2005).

    Article  Google Scholar 

  25. M. Mokhtar, A. Inayat, J. Ofili, and W. Schwieger: Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide: A comparative study. Appl. Clay Sci. 50(2), 176 (2010).

    Article  CAS  Google Scholar 

  26. G. Villain, M. Thiery, and G. Platret: Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res. 37(8), 1182 (2007).

    Article  CAS  Google Scholar 

  27. P. Bouniol and E. Bjergbakke: A comprehensive model to describe radiolytic processes in cement medium. J. Nucl. Mater. 372(1), 1 (2008).

    Article  CAS  Google Scholar 

  28. B. Nowakowski: Influence of penetrating ionizing radiation on the curing of grouts and cement mortars. Build. Sci. 7(4), 271 (1972).

    Article  CAS  Google Scholar 

  29. E. Gallucci, X. Zhang, and K. Scrivener: Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cem. Concr. Res. 53, 185 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study has been sponsored by EPSRC through the University of Sheffield/University of Manchester Doctoral Training Centre ‘Nuclear FiRST’. The NMR spectra were collected using the EPSRC UK National Solid-state NMR Service at Durham University, and the assistance of Dr David Apperley is gratefully acknowledged. Special thanks are due to Dr Ruth Edge and Dalton Cumbrian Facility for their great assistance in the irradiation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobasher, N., Bernal, S.A., Kinoshita, H. et al. Gamma irradiation resistance of an early age slag-blended cement matrix for nuclear waste encapsulation. Journal of Materials Research 30, 1563–1571 (2015). https://doi.org/10.1557/jmr.2014.404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.404

Navigation