Skip to main content
Log in

Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Grain boundary (GB) segregation can markedly improve the stability of nanostructured alloys, where the fraction of GB sites is inherently large. Here, we explore the concept of entropically supported GB segregation in alloys with a tendency to phase-separate and its role in stabilizing nanostructures therein. These duplex nanocrystalline alloys are notably different, both in a structural and thermodynamic sense, from the previously studied “classical” nanocrystalline alloys, which are solid solutions with GB segregation of solute. Experiments are conducted on the W–Cr system, in which nanoduplex structures are expected. Upon heating ball-milled W–15 at.% Cr up to 950 °C, a nanoscale Cr-rich phase was found along the GBs. These precipitates mostly dissolved into the W-rich grains leaving behind Cr-enriched GBs upon further heating to 1400 °C. The presence of Cr-rich nanoprecipitates and GB segregation of Cr is in line with prediction from our Monte Carlo simulation when GB states are incorporated into the alloy thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. Y. Zhao, D.W. He, L.L. Daemen, T.D. Shen, R.B. Schwarz, Y. Zhu, D.L. Bish, J. Huang, J. Zhang, G. Shen, J. Qian, and T.W. Zerda: Superhard B–C–N materials synthesized in nanostructured bulks. J. Mater. Res. 17(12), 3139 (2002).

    Article  CAS  Google Scholar 

  2. Y. Lei, Y. Ito, N.D. Browning, and T.J. Mazanec: Segregation effects at grain boundaries in fluorite-structured ceramics. J. Am. Ceram. Soc. 85(9), 2359 (2002).

    Article  CAS  Google Scholar 

  3. U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir, A. Tacca, F. Maglia, G. Chiodelli, and G. Spinolo: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies. J. Mater. Res. 19(11), 3263 (2004).

    Article  CAS  Google Scholar 

  4. K. Matsui, N. Ohmichi, M. Ohgai, H. Yoshida, and Y. Ikuhara: Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal. J. Mater. Res. 21(09), 2278 (2006).

    Article  CAS  Google Scholar 

  5. T. Buonassisi, A.A. Istratov, M.D. Pickett, M. Heuer, J.P. Kalejs, G. Hahn, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, T.F. Ciszek, R.F. Clark, D.W. Cunningham, A.M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar, and E.R. Weber: Chemical natures and distributions of metal impurities in multicrystalline silicon materials. Prog. Photovoltaics 14(6), 513 (2006).

    Article  CAS  Google Scholar 

  6. K. Biswas, J. He, I.D. Blum, C-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414 (2012).

    Article  CAS  Google Scholar 

  7. S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, and R.O. Ritchie: Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 57(14), 4148 (2009).

    Article  CAS  Google Scholar 

  8. T. Watanabe and S. Tsurekawa: The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering. Acta Mater. 47(15–16), 4171 (1999).

    Article  CAS  Google Scholar 

  9. T.D. Shen, R.B. Schwarz, S. Feng, J.G. Swadener, J.Y. Huang, M. Tang, J. Zhang, S.C. Vogel, and Y. Zhao: Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation. Acta Mater. 55(15), 5007 (2007).

    Article  CAS  Google Scholar 

  10. H-P. Chen, R.K. Kalia, E. Kaxiras, G. Lu, A. Nakano, K-i. Nomura, A.C. van Duin, P. Vashishta, and Z. Yuan: Embrittlement of metal by solute segregation-induced amorphization. Phys. Rev. Lett. 104(15), 155502 (2010).

    Article  CAS  Google Scholar 

  11. J. Luo, H. Cheng, K.M. Asl, C.J. Kiely, and M.P. Harmer: The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333(6050), 1730 (2011).

    Article  CAS  Google Scholar 

  12. Y.J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, and R. Kirchheim: Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. Acta Mater. 60(9), 4005 (2012).

    Article  CAS  Google Scholar 

  13. M. Herbig, D. Raabe, Y. Li, P. Choi, S. Zaefferer, and S. Goto: Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112(12), 126103 (2014).

    Article  CAS  Google Scholar 

  14. I. Povstugar, P-P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, and D. Raabe: Elemental partitioning and mechanical properties of Ti- and Ta-containing Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation. Acta Mater. 78, 78 (2014).

    Article  CAS  Google Scholar 

  15. T. Chookajorn and C.A. Schuh: Nanoscale segregation behavior and high-temperature stability of nanocrystalline W–20 at.% Ti. Acta Mater. 73, 128 (2014).

    Article  CAS  Google Scholar 

  16. A.J. Detor and C.A. Schuh: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22(11), 3233 (2007).

    Article  CAS  Google Scholar 

  17. S-Y. Choi, D-Y. Yoon, and S-J.L. Kang: Kinetic formation and thickening of intergranular amorphous films at grain boundaries in barium titanate. Acta Mater. 52(12), 3721 (2004).

    Article  CAS  Google Scholar 

  18. S. Ruan, K.L. Torres, G.B. Thompson, and C.A. Schuh: Gallium-enhanced phase contrast in atom probe tomography of nanocrystalline and amorphous Al–Mn alloys. Ultramicroscopy 111(8), 1062 (2011).

    Article  CAS  Google Scholar 

  19. C.A. Schuh, M. Kumar, and W.E. King: Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater. 51(3), 687 (2003).

    Article  CAS  Google Scholar 

  20. S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, and N.A. Mara: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 1696 (2013).

    Article  CAS  Google Scholar 

  21. S. Zheng, J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, and N.A. Mara: Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals. Sci. Rep. 4, 1–6 (2014).

    Google Scholar 

  22. O.K. Johnson and C.A. Schuh: The triple junction hull: Tools for grain boundary network design. J. Mech. Phys. Solids 69, 2 (2014).

    Article  Google Scholar 

  23. I.J. Beyerlein, X. Zhang, and A. Misra: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44(1), 329 (2014).

    Article  CAS  Google Scholar 

  24. J. Weissmüller: Alloy effects in nanostructures. Nanostruct. Mater. 3(1–6), 261 (1993).

    Article  Google Scholar 

  25. J. Weissmüller: Alloy thermodynamics in nanostructures. J. Mater. Res. 9(01), 4 (1994).

    Article  Google Scholar 

  26. J. Weissmüller: Some basic notions on nanostructured solids. Mater. Sci. Eng., A 179, 102 (1994).

    Article  Google Scholar 

  27. R. Kirchheim: Grain coarsening inhibited by solute segregation. Acta Mater. 50(2), 413 (2002).

    Article  CAS  Google Scholar 

  28. R. Kirchheim: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55(15), 5129 (2007).

    Article  CAS  Google Scholar 

  29. R. Kirchheim: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences. Acta Mater. 55(15), 5139 (2007).

    Article  CAS  Google Scholar 

  30. P.C. Millett, R.P. Selvam, S. Bansal, and A. Saxena: Atomistic simulation of grain boundary energetics–Effects of dopants. Acta Mater. 53(13), 3671 (2005).

    Article  CAS  Google Scholar 

  31. P.C. Millett, R.P. Selvam, and A. Saxena: Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater. 54(2), 297 (2006).

    Article  CAS  Google Scholar 

  32. P.C. Millett, R.P. Selvam, and A. Saxena: Stabilizing nanocrystalline materials with dopants. Acta Mater. 55(7), 2329 (2007).

    Article  CAS  Google Scholar 

  33. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, and P.P. Choi: Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18(4), 253 (2014).

    Article  CAS  Google Scholar 

  34. M. Tang, W.C. Carter, and R.M. Cannon: Grain boundary transitions in binary alloys. Phys. Rev. Lett. 97(7), 075502 (2006).

    Article  CAS  Google Scholar 

  35. S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer: Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 55(18), 6208 (2007).

    Article  CAS  Google Scholar 

  36. M. Baram, D. Chatain, and W.D. Kaplan: Nanometer-thick equilibrium films: The interface between thermodynamics and atomistics. Science 332(6026), 206 (2011).

    Article  CAS  Google Scholar 

  37. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi: Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Mater. 61(16), 6132 (2013).

    Article  CAS  Google Scholar 

  38. W. Han, M.J. Demkowicz, N.A. Mara, E. Fu, S. Sinha, A.D. Rollett, Y. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25(48), 6975 (2013).

    Article  CAS  Google Scholar 

  39. P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer: Grain boundary complexions. Acta Mater. 62, 1 (2014).

    Article  CAS  Google Scholar 

  40. F. Baletto and R. Ferrando: Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77(1), 371 (2005).

    Article  CAS  Google Scholar 

  41. X. Dou, G. Li, and H. Lei: Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires. Nano Lett. 8(5), 1286 (2008).

    Article  CAS  Google Scholar 

  42. J.J. Vajo: Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Curr. Opin. Solid State Mater. Sci. 15(2), 52 (2011).

    Article  CAS  Google Scholar 

  43. T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).

    Article  CAS  Google Scholar 

  44. H.A. Murdoch and C.A. Schuh: Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61(6), 2121 (2013).

    Article  CAS  Google Scholar 

  45. T. Chookajorn and C.A. Schuh: Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis. Phys. Rev. B 89(6), 064102 (2014).

    Article  CAS  Google Scholar 

  46. T. Chookajorn: Enhancing stability of powder-route nanocrystalline tungsten-titanium via alloy thermodynamics. In Department of Materials Science and Engineering (Massachusetts Institute of Technology, Cambridge, MA, 2013).

    Google Scholar 

  47. R. Kirchheim: Comment on “Unexplored topics and potentials of grain boundary engineering” by L.S. Shvindlerman and G. Gottstein. Scr. Mater. 55(10), 963 (2006).

    Article  CAS  Google Scholar 

  48. G. Gottstein and L.S. Shvindlerman: Reply to comments on “Unexplored topics and potentials of grain boundary engineering”. Scr. Mater. 55(10), 965 (2006).

    Article  CAS  Google Scholar 

  49. P.E.A. Turchi, L. Kaufman, and Z.K. Liu: Modeling of Ni-Cr-Mo based alloys: Part I—phase stability. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 30(1), 70 (2006).

    Article  CAS  Google Scholar 

  50. Z.C. Cordero and C.A. Schuh: Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater. 82, 123 (2015).

    Article  CAS  Google Scholar 

  51. M. Park and C.A. Schuh: Mechanism to accelerate sintering in phase-separating nanostructured alloys. Manuscript presently under review.

  52. D.C. Joy, A.D. Romig, and J. Goldstein: Principles of Analytical Electron Microscopy (Springer, New York, 1986).

    Book  Google Scholar 

  53. G. Lorimer: Quantitative X-ray microanalysis of thin specimens in the transmission electron microscope; a review. Mineral. Mag. 51(359), 49 (1987).

    Article  CAS  Google Scholar 

  54. S-J. Shih, S. Lozano-Perez, and D.J.H. Cockayne: Investigation of grain boundaries for abnormal grain growth in polycrystalline SrTiO3. J. Mater. Res. 25(02), 260 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the US Army Research Office under Grants No. W911NF-09-1-0422 and W911NF-14-1-0539, and by the US Defense Threat Reduction Agency under Grant No. HDTRA1-11-1-0062. M.P. acknowledges support through a Kwan-Jung scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongjai Chookajorn.

Additional information

Contributing Editor: Suk-Joong L. Kang

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chookajorn, T., Park, M. & Schuh, C.A. Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W–Cr. Journal of Materials Research 30, 151–163 (2015). https://doi.org/10.1557/jmr.2014.385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.385

Navigation