Skip to main content
Log in

In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

X-ray and neutron diffraction are particularly useful for characterizing ferroelectric materials in situ, e.g., during application of temperature, pressure, electric field, and stress. In this review, we introduce many experimental approaches for such measurements and highlight important discoveries in ferroelectrics that utilized diffraction. We focus our examples on polycrystalline ferroelectrics, though many of the approaches and analysis methods can also be applied to thin films and single crystals. Methods discussed for characterization of structure include, phase identification, line profile analysis, whole pattern fitting, pair distribution functions, and the x-ray diffraction based three-dimensional microscopy. Further advancement of these and other techniques offers potential for continued important contributions to the fundamental understanding of ferroelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. M. Yashima: In situ observations of phase transition using high-temperature neutron and synchrotron x-ray powder diffractometry. J. Am. Ceram. Soc. 85, 2925 (2004).

    Article  Google Scholar 

  2. G. Eckold, H. Schober, and S. Nagler: Studying Kinetics with Neutrons: Prospects for Time-Resolved Neutron Scattering (Springer, New York, NY, 2009).

    Google Scholar 

  3. J.F. Nye: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford, UK, Clarendon, 1985).

    Google Scholar 

  4. R.E. Cohen: Origin of ferroelectricity in perovskite oxides. Nature 358, 136 (1992).

    Article  CAS  Google Scholar 

  5. D. Fang, F. Li, B. Liu, Y. Zhang, J. Hong, and X. Guo: Advances in developing electromechanically coupled computational methods for piezoelectrics/ferroelectrics at multiscale. Appl. Mech. Rev. 65, 060802 (2013).

    Article  Google Scholar 

  6. D. Ambika: Deposition of PZT thin films with (001), (110), and (111) crystallographic orientations and their transverse piezoelectric characteristics. Adv. Mater. Lett. 3, 102 (2012).

    Article  CAS  Google Scholar 

  7. V.M. Goldschmidt: Crystal structure and chemical constitution. Trans. Faraday Soc. 25, 253 (1929).

    Article  CAS  Google Scholar 

  8. B. Jaffe: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25, 809 (1954).

    Article  CAS  Google Scholar 

  9. B. Jaffe and W.R. Cook: Piezoelectric Ceramics (Academic Press Limited, New York, NY, 1971).

    Google Scholar 

  10. D.S. Keeble, E.R. Barney, D.A. Keen, M.G. Tucker, J. Kreisel, and P.A. Thomas: Bifurcated polarization rotation in bismuth-based piezoelectrics. Adv. Funct. Mater. 23, 185 (2013).

    Article  CAS  Google Scholar 

  11. Y. Wang: Diffraction theory of nanotwin superlattices with low symmetry phase: Application to rhombohedral nanotwins and monoclinic MA and MB phases. Phys. Rev. B 76, 024108 (2007).

    Article  CAS  Google Scholar 

  12. K.A. Schönau, L.A. Schmitt, M. Knapp, H. Fuess, R-A. Eichel, H. Kungl, and M.J. Hoffmann: Nanodomain structure of Pb[Zr1−xTix]O3 at its morphotropic phase boundary: Investigations from local to average structure. Phys. Rev. B 75, 184117 (2007).

    Article  CAS  Google Scholar 

  13. E. Aksel, J.S. Forrester, J.C. Nino, K. Page, D.P. Shoemaker, and J.L. Jones: Local atomic structure deviation from average structure of Na0.5Bi0.5TiO3: Combined x-ray and neutron total scattering study. Phys. Rev. B 87, 104113 (2013).

    Article  CAS  Google Scholar 

  14. I. Levin and I.M. Reaney: Nano- and mesoscale structure of Na1/2Bi1/2TiO3: A TEM perspective. Adv. Funct. Mater. 22, 3445 (2012).

    Article  CAS  Google Scholar 

  15. R. Dinnebier and S. Billinge: Powder Diffraction: Theory and Practice (Royal Society of Chemistry, Cambridge, UK, 2008).

    Book  Google Scholar 

  16. U.F. Kocks, C.N. Tomé, and H-R. Wenk: Texture and Anisotropy Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge University Press, New York, NY, 1998), p. 676.

    Google Scholar 

  17. B. Noheda, D. Cox, G. Shirane, J. Gao, and Z-G. Ye: Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B 66, 054104 (2002).

    Article  CAS  Google Scholar 

  18. D. Chateigner, H-R. Wenk, A. Patel, M. Todd, and D.J. Barber: Analysis of preferred orientations in PST and PZT thin films on various substrates. Integr. Ferroelectr. 19, 121 (1998).

    Article  CAS  Google Scholar 

  19. G.A. Rossetti, L.E. Cross, and J.P. Cline: Structural aspects of the ferroelectric phase transition in lanthanum-substituted lead titanate. J. Mater. Sci. 30, 24 (1995).

    Article  CAS  Google Scholar 

  20. Y-H. Bing, A.A. Bokov, Z-G. Ye, B. Noheda, and G. Shirane: Structural phase transition and dielectric relaxation in Pb(Zn1/3Nb2/3)O3 single crystals. J. Phys. Condens. Matter 17, 2493 (2005).

    Article  CAS  Google Scholar 

  21. S. Chattopadhyay, P. Ayyub, V. Palkar, and M. Multani: Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3. Phys. Rev. B 52, 13177 (1995).

    Article  CAS  Google Scholar 

  22. K. Uchino, E. Sadanaga, and T. Hirose: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555 (1989).

    Article  CAS  Google Scholar 

  23. R.L. Johnson-Wilke, D.S. Tinberg, C. Yeager, W. Qu, D.D. Fong, T.T. Fister, S.K. Streiffer, Y. Han, I.M. Reaney, and S. Trolier-McKinstry: Coherently strained epitaxial Pb(Zr1−xTix)O3 thin films. J. Appl. Phys. 114, 164104 (2013).

    Article  CAS  Google Scholar 

  24. W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, and Z.H. Yang: Phase transition in PbTiO3 ultrafine particles of different sizes. J. Phys. Condens. Matter 5, 2619 (1993).

    Article  CAS  Google Scholar 

  25. Z. Zhou, O. Obi, T.X. Nan, S. Beguhn, J. Lou, X. Yang, Y. Gao, M. Li, S. Rand, H. Lin, N.X. Sun, G. Esteves, K. Nittala, J.L. Jones, K. Mahalingam, M. Liu, and G.J. Brown: Low-temperature spin spray deposited ferrite/piezoelectric thin film magnetoelectric heterostructures with strong magnetoelectric coupling. J. Mater. Sci. Mater. Electron. 25, 1188 (2014).

    Article  CAS  Google Scholar 

  26. J.E. Daniels, J.L. Jones, and T.R. Finlayson: Characterization of domain structures from diffraction profiles in tetragonal ferroelastic ceramics. J. Phys. D. Appl. Phys. 39, 5294 (2006).

    Article  CAS  Google Scholar 

  27. B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 2001).

    Google Scholar 

  28. R. Ueda and G. Shirane: X-ray study on phase transition of lead zirconate, PbZrO3. J. Phys. Soc. Jpn. 6, 209 (1951).

    Article  CAS  Google Scholar 

  29. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, and S-E. Park: A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Appl. Phys. Lett. 74, 2059 (1999).

    Article  CAS  Google Scholar 

  30. B. Noheda, J. Gonzalo, L. Cross, R. Guo, S-E. Park, D. Cox, and G. Shirane: Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3. Phys. Rev. B 61, 8687 (2000).

    Article  CAS  Google Scholar 

  31. N. Zhang, H. Yokota, A.M. Glazer, and P.A. Thomas: Neutron powder diffraction refinement of PbZr(1-x)Ti(x)O3. Acta Crystallogr. B. 67, 386 (2011).

    Article  CAS  Google Scholar 

  32. D. Woodward, J. Knudsen, and I. Reaney: Review of crystal and domain structures in the PbZrxTi1−xO3 solid solution. Phys. Rev. B 72, 104110 (2005).

    Article  CAS  Google Scholar 

  33. B. Noheda and D.E. Cox: Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transitions 79, 5 (2006).

    Article  CAS  Google Scholar 

  34. S. Gorfman, D.S. Keeble, A.M. Glazer, X. Long, Y. Xie, Z-G. Ye, S. Collins, and P.A. Thomas: High-resolution x-ray diffraction study of single crystals of lead zirconate titanate. Phys. Rev. B 84, 020102 (2011).

    Article  CAS  Google Scholar 

  35. A. Katrusiak: High-pressure crystallography. Acta Crystallogr. A 64, 135 (2008).

    Article  CAS  Google Scholar 

  36. G. Piermarini: High pressure x-ray crystallography with the diamond cell at NIST/NBS. J. Res. Natl. Inst. Stand. Technol. 106, 889 (2011).

    Article  Google Scholar 

  37. V. Pecharsky and P. Zavalij: Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, Boston, MA, 2009).

    Google Scholar 

  38. S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, and G. Morard: Melting of iron at earth’s inner core boundary based on fast x-ray diffraction. Science 340, 464 (2013).

    Article  CAS  Google Scholar 

  39. M. Ahart, R. Cohen, V. Struzhkin, E. Gregoryanz, D. Rytz, S. Prosandeev, H. Mao, and R. Hemley: High-pressure Raman scattering and x-ray diffraction of the relaxor ferroelectric 0.96Pb(Zn1/3Nb2/3)O3-0.04PbTiO3. Phys. Rev. B 71, 144102 (2005).

    Article  CAS  Google Scholar 

  40. M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H. Mao, R.J. Hemley, Y. Ren, P. Liermann, and Z. Wu: Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545 (2008).

    Article  CAS  Google Scholar 

  41. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Lead-free piezoceramics. Nature 432, 84 (2004).

    Article  CAS  Google Scholar 

  42. J.E. Daniels, W. Jo, J. Rödel, V. Honkimäki, and J.L. Jones: Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3: A combinatorial investigation. Acta Mater. 58, 2103 (2010).

    Article  CAS  Google Scholar 

  43. J.E. Daniels, W. Jo, J. Rödel, and J.L. Jones: Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7% BaTiO3 piezoelectric ceramic. Appl. Phys. Lett. 95, 032904 (2009).

    Article  CAS  Google Scholar 

  44. A.J. Royles, A.J. Bell, A.P. Jephcoat, A.K. Kleppe, S.J. Milne and T.P. Comyn: Electric-field-induced phase switching in the lead free piezoelectric potassium sodium bismuth titanate. Appl. Phys. Lett. 97, 132909 (2010).

    Article  CAS  Google Scholar 

  45. I. Dutta and R.N. Singh: Dynamic in situ x-ray diffraction study of antiferroelectric–ferroelectric phase transition in strontium-modified lead zirconate titanate ceramics. Integr. Ferroelectr. 131, 153 (2011).

    Article  CAS  Google Scholar 

  46. M. Hinterstein, J. Rouquette, J. Haines, P. Papet, M. Knapp, J. Glaum, and H. Fuess: Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate. Phys. Rev. Lett. 107, 077602 (2011).

    Article  CAS  Google Scholar 

  47. J.L. Jones, E. Aksel, G. Tutuncu, T-M. Usher, J. Chen, X. Xing, and A.J. Studer: Domain wall and interphase boundary motion in a two-phase morphotropic phase boundary ferroelectric: Frequency dispersion and contribution to piezoelectric and dielectric properties. Phys. Rev. B 86, 024104 (2012).

    Article  CAS  Google Scholar 

  48. H. Simons, J.E. Daniels, A.J. Studer, J.L. Jones, and M. Hoffman: Measurement and analysis of field-induced crystallographic texture using curved position-sensitive diffraction detectors. J. Electroceramics 32, 283 (2014).

    Article  CAS  Google Scholar 

  49. H.M. Rietveld: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).

    Article  CAS  Google Scholar 

  50. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, and P. Scardi: Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36 (1999).

    Article  CAS  Google Scholar 

  51. R.A. Young: The Rietveld Method (Oxford University Press, Oxford, UK, 1995).

    Google Scholar 

  52. B.H. Toby: EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210 (2001).

    Article  CAS  Google Scholar 

  53. A.C. Larzon and R.B. Von Dreele: GSAS (General Structure Analysis System). LANSCE, MS-H805; Los Alamos, NM, 1994.

    Google Scholar 

  54. J. Rodríguez-Carvajal: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 192, 55 (1993).

    Article  Google Scholar 

  55. E.S. Božin, C.D. Malliakas, P. Souvatzis, T. Proffen, N.A. Spaldin, M.G. Kanatzidis, and S.J.L. Billinge: Entropically stabilized local dipole formation in lead chalcogenides. Science 330, 1660 (2010).

    Article  CAS  Google Scholar 

  56. Y. Zhang, X. Ke, P.R.C. Kent, J. Yang, and C. Chen: Anomalous lattice dynamics near the ferroelectric instability in PbTe. Phys. Rev. Lett. 107, 175503 (2011).

    Article  CAS  Google Scholar 

  57. J. Axe: Apparent ionic charges and vibrational eigenmodes of BaTiO3 and other perovskites. Phys. Rev. 157, 429 (1967).

    Article  CAS  Google Scholar 

  58. Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, and F. Izumi: Crystal structure and ferroelectric properties of ABi2Ta2O9 (A=Ca, Sr, and Ba). Phys. Rev. B 61, 6559 (2000).

    Article  CAS  Google Scholar 

  59. H.D. Megaw and C.N.W. Darlington: Geometrical and structural relations in the rhombohedral perovskites. Acta Crystallogr. Sect. A 31, 161 (1975).

    Article  Google Scholar 

  60. D. Pandey, A.K. Singh, and S. Baik: Stability of ferroic phases in the highly piezoelectric Pb(ZrxTi1-x)O3 ceramics. Acta Crystallogr. A 64, 192 (2008).

    Article  CAS  Google Scholar 

  61. J.S. Forrester, E.H. Kisi, K.S. Knight, and C.J. Howard: Rhombohedral to cubic phase transition in the relaxor ferroelectric PZN. J. Phys. Condens. Matter 18, L233 (2006).

    Article  CAS  Google Scholar 

  62. D.L. Corker, A.M. Glazer, R.W. Whatmore, A. Stallard, and F. Fauth: A neutron diffraction investigation into the rhombohedral phases of the perovskite series. J. Phys. Condens. Matter 10, 6251 (1998).

    Article  CAS  Google Scholar 

  63. A.M. Glazer and S.A. Mabud: Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 34, 1065 (1978).

    Article  Google Scholar 

  64. I.A. Kornev, L. Bellaiche, P-E. Janolin, B. Dkhil and E. Suard: Phase diagram of Pb(Zr,Ti)O3 solid solutions from first principles. Phys. Rev. Lett. 97, 157601 (2006).

    Article  CAS  Google Scholar 

  65. R.J. Hill and C.J. Howard: Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Crystallogr. 20, 467 (1987).

    Article  CAS  Google Scholar 

  66. G.O. Jones and P.A. Thomas: Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr. Sect. B Struct. Sci. 58, 168 (2002).

    Article  CAS  Google Scholar 

  67. E. Aksel, J.S. Forrester, B. Kowalski, J.L. Jones, and P.A. Thomas: Phase transition sequence in sodium bismuth titanate observed using high-resolution x-ray diffraction. Appl. Phys. Lett. 99, 222901 (2011).

    Article  CAS  Google Scholar 

  68. Y. Hiruma, H. Nagata, and T. Takenaka: Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105, 084112 (2009).

    Article  CAS  Google Scholar 

  69. E. Aksel, J.S. Forrester, H.M. Foronda, R. Dittmer, D. Damjanovic, and J.L. Jones: Structure and properties of La-modified Na0.5Bi0.5TiO3 at ambient and elevated temperatures. J. Appl. Phys. 112, 054111 (2012).

    Article  CAS  Google Scholar 

  70. E. Aksel, J.S. Forrester, B. Kowalski, M. Deluca, D. Damjanovic, and J.L. Jones: Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature. Phys. Rev. B 85, 024121 (2012).

    Article  CAS  Google Scholar 

  71. A. Sani, M. Hanfland, and D. Levy: Pressure and temperature dependence of the ferroelectric–paraelectric phase transition in PbTiO3. J. Solid State Chem. 167, 446 (2002).

    Article  CAS  Google Scholar 

  72. P.A. Thomas, J. Kreisel, A.M. Glazer, P. Bouvier, Q. Jiang, and R. Smith: The high-pressure structural phase transitions of sodium bismuth titanate. Zeitschrift für Krist. 220, 717 (2005).

    CAS  Google Scholar 

  73. A. Pramanick, D. Damjanovic, J.E. Daniels, J.C. Nino, and J.L. Jones: Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J. Am. Ceram. Soc. 94, 293 (2011).

    Article  CAS  Google Scholar 

  74. G. Tutuncu, L. Fan, J. Chen, X. Xing, and J.L. Jones: Extensive domain wall motion and deaging resistance in morphotropic 0.55Bi(Ni1/2Ti1/2)O3–0.45PbTiO3 polycrystalline ferroelectrics. Appl. Phys. Lett. 104, 132907 (2014).

    Article  CAS  Google Scholar 

  75. J.L. Jones, E.B. Slamovich, and K.J. Bowman: Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction. J. Appl. Phys. 97, 034113 (2005).

    Article  CAS  Google Scholar 

  76. G. Tutuncu, B. Li, K. Bowman, and J.L. Jones: Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1−x)Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 using in situ high-energy x-ray diffraction during application of electric fields. J. Appl. Phys. 115, 144104 (2014).

    Article  CAS  Google Scholar 

  77. A. Grigoriev, D-H. Do, D. Kim, C-B. Eom, B. Adams, E. Dufresne, and P. Evans: Nanosecond domain wall dynamics in ferroelectric Pb(Zr,Ti)O3 thin films. Phys. Rev. Lett. 96, 187601 (2006).

    Article  CAS  Google Scholar 

  78. Y.A. Genenko, S. Zhukov, S.V. Yampolskii, J. Schütrumpf, R. Dittmer, W. Jo, H. Kungl, M.J. Hoffmann, and H. von Seggern: Universal polarization switching behavior of disordered ferroelectrics. Adv. Funct. Mater. 22, 2058 (2012).

    Article  CAS  Google Scholar 

  79. J.E. Daniels, C. Cozzan, S. Ukritnukun, G. Tutuncu, J. Andrieux, J. Glaum, C. Dosch, W. Jo, and J.L. Jones: Two-step polarization reversal in biased ferroelectrics. J. Appl. Phys. 115, 224104 (2014).

    Article  CAS  Google Scholar 

  80. S. Gorfman, O. Schmidt, U. Pietsch, P. Becker, and L. Bohatý: X-ray diffraction study of the piezoelectric properties of BiB3O6 single crystals. Zeitschrift für Krist. 222, 396 (2007).

    CAS  Google Scholar 

  81. P. Fertey, P. Alle, E. Wenger, B. Dinkespiler, O. Cambon, J. Haines, S. Hustache, K. Medjoubi, F. Picca, A. Dawiec, P. Breugnon, P. Delpierre, C. Mazzoli, and C. Lecomte: Diffraction studies under in situ electric field using a large-area hybrid pixel XPAD detector. J. Appl. Crystallogr. 46, 1151 (2013).

    Article  CAS  Google Scholar 

  82. S. Gorfman, V. Tsirelson, A. Pucher, W. Morgenroth, and U. Pietsch: X-ray diffraction by a crystal in a permanent external electric field: Electric-field-induced structural response in alpha-GaPO4. Acta Crystallogr. A 62, 1 (2006).

    Article  CAS  Google Scholar 

  83. S. Gorfman, O. Schmidt, V. Tsirelson, M. Ziolkowski, and U. Pietsch: Crystallography under external electric field. Zeitschrift für Anorg. und Allg. Chemie 639, 1953 (2013).

    Article  CAS  Google Scholar 

  84. D. Ghosh, A. Sakata, J. Carter, P.A. Thomas, H. Han, J.C. Nino, and J.L. Jones: Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes. Adv. Funct. Mater. 24, 885 (2014).

    Article  CAS  Google Scholar 

  85. J.D.S. Evans, E.C. Oliver, P.J. Withers, T. Mori and D.A. Hall: In situ neutron diffraction study of the rhombohedral to orthorhombic phase transformation in lead zirconate titanate ceramics produced by uniaxial compression. Philos. Mag. Lett. 87, 41 (2007).

    Article  CAS  Google Scholar 

  86. J.S. Forrester, E.H. Kisi, and A.J. Studer: Direct observation of ferroelastic domain switching in polycrystalline BaTiO3 using in situ neutron diffraction. J. Eur. Ceram. Soc. 25, 447 (2005).

    Article  CAS  Google Scholar 

  87. G. Tutuncu, M. Motahari, J. Bernier, M. Varlioglu, J.L. Jones, and E. Ustundag: Strain evolution of highly asymmetric polycrystalline ferroelectric ceramics via a self-consistent model and in situ x-ray diffraction. J. Am. Ceram. Soc. 95, 3947 (2012).

    Article  CAS  Google Scholar 

  88. K.G. Webber, Y. Zhang, W. Jo, J.E. Daniels and J. Rödel: High temperature stress-induced “double loop-like” phase transitions in Bi-based perovskites. J. Appl. Phys. 108, 014101 (2010).

    Article  CAS  Google Scholar 

  89. J.L. Jones, S.M. Motahari, M. Varlioglu, U. Lienert, J.V. Bernier, M. Hoffman, and E. Üstündag: Crack tip process zone domain switching in a soft lead zirconate titanate ceramic. Acta Mater. 55, 5538 (2007).

    Article  CAS  Google Scholar 

  90. S. Pojprapai(Imlao), Z. Luo, B. Clausen, S.C. Vogel, D.W. Brown, J. Russel, and M. Hoffman: Dynamic processes of domain switching in lead zirconate titanate under cyclic mechanical loading by in situ neutron diffraction. Acta Mater. 58, 1897 (2010).

    Article  CAS  Google Scholar 

  91. R.C. Rogan, E. Üstündag, B. Clausen, and M.R. Daymond: Texture and strain analysis of the ferroelastic behavior of Pb(Zr,Ti)O3 by in situ neutron diffraction. J. Appl. Phys. 93, 4104 (2003).

    Article  CAS  Google Scholar 

  92. M. Marsilius, T. Granzow, and J.L. Jones: Quantitative comparison between the degree of domain orientation and nonlinear properties of a PZT ceramic during electrical and mechanical loading. J. Mater. Res. 26, 1126 (2011).

    Article  CAS  Google Scholar 

  93. W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, and J. Rödel: Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J. Appl. Phys. 109, 014110 (2011).

    Article  CAS  Google Scholar 

  94. G. Eckold, H. Gibhardt, D. Caspary, P. Elter, and K. Elisbihani: Stroboscopic neutron diffraction from spatially modulated systems. Zeitschrift für Krist. 218, 144 (2003).

    CAS  Google Scholar 

  95. G. Eckold, M. Hagen, and U. Steigenberger: Kinetics of phase transitions in modulated ferroelectrics: Time-resolved neutron diffraction from Rb2ZnCl4. Phase Transitions 67, 219 (1998).

    Article  CAS  Google Scholar 

  96. Z. Huang, Q. Zhang, and R. Whatmore: The role of an intermetallic phase on the crystallization of lead zirconate titanate in sol–gel process. J. Mater. Sci. Lett. 17, 1157 (1998).

    Article  CAS  Google Scholar 

  97. K. Nittala, S. Mhin, K.M. Dunnigan, D.S. Robinson, J.F. Ihlefeld, P.G. Kotula, G.L. Brennecka, and J.L. Jones: Phase and texture evolution in solution deposited lead zirconate titanate thin films: Formation and role of the Pt3Pb intermetallic phase. J. Appl. Phys. 113, 244101 (2013).

    Article  CAS  Google Scholar 

  98. G. Tutuncu, Y. Chang, S. Poterala, G.L. Messing, and J.L. Jones: In situ observations of templated grain growth in (Na0.5K0.5)0.98Li0.02NbO3 piezoceramics: Texture development and template-matrix interactions. J. Am. Ceram. Soc. 95, 2653 (2012).

    Article  CAS  Google Scholar 

  99. T. Egami and S.J.L. Billinge: Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Elsevier, Oxford, UK, 2003).

    Book  Google Scholar 

  100. I-K. Jeong and J.K. Lee: Local structure and medium-range ordering in relaxor ferroelectric Pb(Zn1/3Nb2/3)O3 studied using neutron pair distribution function analysis. Appl. Phys. Lett. 88, 262905 (2006).

    Article  CAS  Google Scholar 

  101. I-K. Jeong, J.K. Lee, and R.H. Heffner: Local structural view on the polarization rotation in relaxor ferroelectric (1−x)Pb(Zn1/3Nb2/3)O3–xPbTiO3. Appl. Phys. Lett. 92, 172911 (2008).

    Article  CAS  Google Scholar 

  102. I-K. Jeong, T. Darling, J. Lee, T. Proffen, R. Heffner, J. Park, K. Hong, W. Dmowski, and T. Egami: Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. Phys. Rev. Lett. 94, 147602 (2005).

    Article  CAS  Google Scholar 

  103. I. Grinberg and A. Rappe: Local structure and macroscopic properties in PbMg1/3Nb2/3O3-PbTiO3 and PbZn1/3Nb2/3O3-PbTiO3 solid solutions. Phys. Rev. B 70, 220101 (2004).

    Article  CAS  Google Scholar 

  104. T. Egami, W. Dmowski, M. Akbas, and P.K. Davies: Local structure and polarization in Pb containing ferroelectric oxides. AIP Conf. Proc. 436, 1 (1998).

    CAS  Google Scholar 

  105. K.W. Chapman, P.J. Chupas, G.J. Halder, J.A. Hriljac, C. Kurtz, B.K. Greve, C.J. Ruschman, and A.P. Wilkinson: Optimizing high-pressure pair distribution function measurements in diamond anvil cells. J. Appl. Crystallogr. 43, 297 (2010).

    Article  CAS  Google Scholar 

  106. H. Poulsen: Three-Dimensional X-Ray Diffraction Microscopy (Springer, Berlin Heidelberg, 2004), p. 205.

    Book  Google Scholar 

  107. D.J. Jensen and H.F. Poulsen: The three dimensional x-ray diffraction technique. Mater. Charact. 72, 1 (2012).

    Article  CAS  Google Scholar 

  108. S. Schmidt: GrainSpotter: A fast and robust polycrystalline indexing algorithm. J. Appl. Crystallogr. 47, 276 (2014).

    Article  CAS  Google Scholar 

  109. E.M. Lauridsen, S. Schmidt, R.M. Suter, and H.F. Poulsen: Tracking: A method for structural characterization of grains in powders or polycrystals. J. Appl. Crystallogr. 34, 744 (2001).

    Article  CAS  Google Scholar 

  110. S. Schmidt: GrainSweeper Program. <http://fable.wiki.sourceforge.net/GrainSweeper>.

  111. M. Varlioglu, U. Lienert, J-S. Park, J.L. Jones, and E. Üstündag: Thermal and electric field-dependent evolution of domain structures in polycrystalline BaTiO3 using the 3D-XRD technique. Texture, Stress. Microstruct. 2010, 1 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge support from the Army Research Office under contract W911NF-09-1-0435.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob L. Jones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esteves, G., Fancher, C.M. & Jones, J.L. In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction. Journal of Materials Research 30, 340–356 (2015). https://doi.org/10.1557/jmr.2014.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.302

Navigation