Skip to main content
Log in

A critical examination of the paradox of strength and ductility in ultrafine-grained metals

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The paradox of strength and ductility is now well established and denotes the difficulty of simultaneously achieving both high strength and high ductility. This paradox was critically examined using a cast Al–7%Si alloy processed by high-pressure torsion (HPT) for up to 10 turns at a temperature of either 298 or 445 K. This processing reduces the grain size to a minimum of ∼0.4 µm and also decreases the average size of the Si particles. The results show that samples processed to high numbers of HPT turns exhibit both high strength and high ductility when tested at relatively low strain rates and the strain rate sensitivity under these conditions is ∼0.14 which suggests that flow occurs by some limited grain boundary sliding and crystallographic slip. The results are also displayed on the traditional diagram for strength and ductility and they demonstrate the potential for achieving high strength and high ductility by increasing the number of turns in HPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

    CAS  Google Scholar 

  2. T.G. Langdon: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 7035 (2013).

    CAS  Google Scholar 

  3. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4), 33 (2006).

    Google Scholar 

  4. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    CAS  Google Scholar 

  5. A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).

    CAS  Google Scholar 

  6. A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, and T.G. Langdon: Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scr. Mater. 44, 2753 (2001).

    CAS  Google Scholar 

  7. A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, and T.G. Langdon: Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753 (2003).

    CAS  Google Scholar 

  8. J. Wongsa-Ngam, M. Kawasaki, and T.G. Langdon: A comparison of microstructures and mechanical properties in a Cu-Zr alloy processed using different SPD techniques. J. Mater. Sci. 48, 4653 (2013).

    CAS  Google Scholar 

  9. E.O. Hall: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. 64B, 747 (1951).

    Google Scholar 

  10. N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  11. R. Valiev: Materials science — Nanomaterial advantage. Nature 419, 887 (2002).

    CAS  Google Scholar 

  12. R. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).

    CAS  Google Scholar 

  13. D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl. Phys. Lett. 79, 611 (2001).

    CAS  Google Scholar 

  14. Y.M. Wang and E. Ma: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng., A 375–377, 46 (2004).

    Google Scholar 

  15. C.C. Koch, D.G. Morris, K. Lu, and A. Inoue: Ductility of nanostructured materials. MRS Bull. 24(2), 54 (1999).

    CAS  Google Scholar 

  16. Y.M. Wang and E. Ma: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699 (2004).

    CAS  Google Scholar 

  17. E. Ma: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58(4), 49 (2006).

    CAS  Google Scholar 

  18. Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Appl. Phys. Lett. 92, 081903 (2008).

    Google Scholar 

  19. Y. Zhao, Y. Zhu, and E.J. Lavernia: Strategies for improving tensile ductility of bulk nanostructured materials. Adv. Eng. Mater. 12, 769 (2010).

    CAS  Google Scholar 

  20. Z. Horita, K. Ohashi, T. Fujita, K. Kaneko, and T.G. Langdon: Achieving high strength and high ductility in precipitation-hardened alloys. Adv. Mater. 17, 1599 (2005).

    CAS  Google Scholar 

  21. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu: Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280 (2006).

    CAS  Google Scholar 

  22. Y.H. Zhao, J.E. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T.T. Zhu: Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18, 2949 (2006).

    CAS  Google Scholar 

  23. Y.H. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y.T. Zhu, Y. Zhou, and E.J. Lavernia: High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20, 3033 (2008).

    Google Scholar 

  24. H.W. Höppel, Z. Zhou, H. Mughrabi, and R.Z. Valiev: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. 82A, 1781 (2002).

    Google Scholar 

  25. A. Vinogradov and S. Hashimoto: Fatigue of severely deformed metals. Adv. Eng. Mater. 5, 351 (2003).

    CAS  Google Scholar 

  26. H.W. Höppel, M. Kautz, C. Xu, M. Murashkin, T.G. Langdon, R.Z. Valiev, and H. Mughrabi: An overview: Fatigue behaviour of ultrafine-grained metals and alloys. Int. J. Fatigue 28, 1001 (2006).

    Google Scholar 

  27. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).

    CAS  Google Scholar 

  28. F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma: Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes. Acta Mater. 52, 4819 (2004).

    Google Scholar 

  29. P. Kumar, C. Xu, and T.G. Langdon: Influence of strain rate on strength and ductility in an aluminum alloy processed by equal-channel angular pressing. J. Mater. Sci. 44, 3913 (2009).

    CAS  Google Scholar 

  30. J.G. Kaufman and E.L. Roy: Aluminum Casting Alloys. Properties, Processes and Applications (American Foundry Society, ASM International, Materials Park, OH, 2004).

    Google Scholar 

  31. M.F. Hafiz and T. Kobayashi: Tensile properties influencing variables in eutectic Al-Si casting alloys. Scr. Metall. Mater. 31, 701 (1994).

    CAS  Google Scholar 

  32. M.F. Hafiz and T. Kobayashi: Fracture toughness of eutectic Al-Si casting alloy with different microstructural features. J. Mater. Sci. 31, 6195 (1996).

    CAS  Google Scholar 

  33. J.M. García-Infanta, S. Swaminathan, A.P. Zhilyaev, F. Carreño, O.A. Ruano, and T.R. McNelley: Microstructural development during equal channel angular pressing of hypo-eutectic Al-Si casting alloy by different processing routes. Mater. Sci. Eng., A 485, 160 (2008).

    Google Scholar 

  34. J.M. García-Infanta, A.P. Zhilyaev, F. Carreño, O.A. Ruano, J.Q. Su, S.K. Menon, and T.R. McNelley: Strain path and microstructure evolution during severe deformation processing of an as-cast hypoeutectic Al-Si alloy. J. Mater. Sci. 45, 4613 (2010).

    Google Scholar 

  35. A.P. Zhilyaev, J.M. García-Infanta, F. Carreño, T.G. Langdon, and O.A. Ruano: Particle and grain growth in an Al-Si alloy during high-pressure torsion. Scr. Mater. 57, 763 (2007).

    CAS  Google Scholar 

  36. V. Rajinikanth, K. Venkateswarlu, M.K. Sen, M. Das, S.N. Alhajeri, and T.G. Langdon: Influence of scandium on an Al-2% Si alloy processed by high-pressure torsion. Mater. Sci. Eng., A 528, 1702 (2011).

    Google Scholar 

  37. K. Venkateswarlu, V. Rajinikanth, S.N. Alhajeri, and T.G. Langdon: Application of high-pressure torsion to Al-Si alloys with and without scandium additions. Mater. Sci. Forum 667–669, 743 (2011).

    Google Scholar 

  38. T. Mungole, N. Nadammal, K. Dawra, P. Kumar, M. Kawasaki, and T.G. Langdon: Evolution of microhardness and microstructure in a cast Al–7% Si alloy during high-pressure torsion. J. Mater. Sci. 48, 4671 (2013).

    CAS  Google Scholar 

  39. R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon: Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater. Sci. Eng., A 528, 8198 (2011).

    CAS  Google Scholar 

  40. R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, and T.G. Langdon: Using finite element modelling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater. 60, 3190 (2012).

    CAS  Google Scholar 

  41. M. Kawasaki and T.G. Langdon: The significance of strain reversals during processing by high-pressure torsion. Mater. Sci. Eng., A 498, 341 (2008).

    Google Scholar 

  42. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, and B. Baudelet: Structure and deformation behaviour of armco iron subjected to severe plastic deformation. Acta Mater. 44, 4705 (1996).

    CAS  Google Scholar 

  43. F. Wetscher, A. Vorhauer, R. Stock, and R. Pippan: Structural refinement of low alloyed steels during severe plastic deformation. Mater. Sci. Eng., A 387–389, 809 (2004).

    Google Scholar 

  44. F. Wetscher, R. Pippan, S. Sturm, F. Kauffmann, C. Scheu, and G. Dehm: TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion. Metall. Mater. Trans. A 37, 1963 (2006).

    Google Scholar 

  45. Y. Estrin, A. Molotnikov, C.H.J. Davies, and R. Lapovok: Strain gradient plasticity modelling of high-pressure torsion. J. Mech. Phys. Solids 56, 1186 (2008).

    CAS  Google Scholar 

  46. A. Loucif, R.B. Figueiredo, M. Kawasaki, T. Baudin, F. Brisset, R. Chemam, and T.G. Langdon: Effect of aging on microstructural development in an Al–Mg–Si alloy processed by high-pressure torsion. J. Mater. Sci. 47, 7815 (2012).

    CAS  Google Scholar 

  47. Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr. Mater. 59, 627 (2008).

    CAS  Google Scholar 

  48. Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, and E.J. Lavernia: Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater. Sci. Eng., A 525, 68 (2009).

    Google Scholar 

  49. P. Eaton and P. West: Atomic Force Microscopy (Oxford University Press, New York, NY, 2010).

    Google Scholar 

  50. T.G. Langdon: An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater. Sci. Eng., A 174A, 225 (1994).

    Google Scholar 

  51. T.G. Langdon: Seventy-five years of superplasticity: Historic developments and new opportunities. J. Mater. Sci. 44, 5998 (2009).

    CAS  Google Scholar 

  52. R.C. Gifkins and T.G. Langdon: On the question of low-temperature sliding at grain boundaries. J. Inst. Met. 93, 347 (1965).

    CAS  Google Scholar 

  53. T.G. Langdon: Grain boundary sliding revisited: Developments in sliding over four decades. J. Mater. Sci. 41, 597 (2006).

    CAS  Google Scholar 

  54. H. Van Swygenhoven and A. Caro: Plastic behavior of nanophase Ni: A molecular dynamics computer simulation. Appl. Phys. Lett. 71, 1652 (1997).

    Google Scholar 

  55. J. Schiøtz, F.D. Di Tolla, and K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).

    Google Scholar 

  56. H. Van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas: Competing plastic deformation mechanisms in nanophase metals. Phys. Rev. B 60, 22 (1999).

    Google Scholar 

  57. H. Van Swygenhoven and P.M. Derlet: Grain-boundary sliding in nanocrystalline FCC metals. Phys. Rev. B 64, 224105 (2001).

    Google Scholar 

  58. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).

    CAS  Google Scholar 

  59. R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet: Deformation-behavior of ultra-fine-grained copper. Acta Metall. Mater. 42, 2467 (1994).

    CAS  Google Scholar 

  60. N.Q. Chinh, G. Vörös, P. Szommer, Z. Horita, and T.G. Langdon: Grain boundary sliding as a significant mechanism of low temperature plastic deformation in ECAP aluminum. Mater. Sci. Forum 503–504, 1001 (2006).

    Google Scholar 

  61. N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon: Experimental evidence for grain boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv. Mater. 18, 34 (2006).

    CAS  Google Scholar 

  62. R.Z. Valiev, M. Yu Murashkin, A. Kilmametov, B. Straumal, N.Q. Chinh, and T.G. Langdon: Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. J. Mater. Sci. 45, 4718 (2010).

    CAS  Google Scholar 

  63. N.Q. Chinh, T. Csanádi, J. Gubicza, R.Z. Valiev, B.B. Straumal, and T.G. Langdon: The effect of grain boundary sliding and strain rate sensitivity on the ductility of ultrafine-grained materials. Mater. Sci. Forum 667–669, 677 (2011).

    Google Scholar 

  64. N.Q. Chinh, T. Györi, R.Z. Valiev, P. Szommer, G. Varga, K. Havancsák, and T.G. Langdon: Observations of unique plastic behavior in micro-pillars of an ultrafine-grained alloy. MRS Commun. 2, 75 (2012).

    CAS  Google Scholar 

  65. A.V. Polyakov, I.P. Semenova, R.Z. Valiev, Y. Huang, and T.G. Langdon: Influence of annealing on ductility of ultrafine-grained titanium processed by ECAP-conform and drawing. MRS Commun. 3, 249 (2013).

    CAS  Google Scholar 

  66. R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov: Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng., A 168, 141 (1993).

    Google Scholar 

  67. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 11, 1880 (1996).

    CAS  Google Scholar 

  68. Z. Horita, D.J. Smith, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy. J. Mater. Res. 13, 446 (1998).

    CAS  Google Scholar 

  69. M. Kawasaki, Z. Horita, and T.G. Langdon: Microstructural evolution in high purity aluminum processed by ECAP. Mater. Sci. Eng., A 524, 143 (2009).

    Google Scholar 

  70. C. Xu, Z. Horita, and T.G. Langdon: Microstructural evolution in an aluminum solid solution alloy processed by ECAP. Mater. Sci. Eng., A 528, 6059 (2011).

    CAS  Google Scholar 

  71. A. Loucif, T. Baudin, R.B. Figueiredo, F. Brisset, A.L. Helbert, R. Chemam, and T.G. Langdon: Microstructure and microtexture evolution with aging treatment in an Al-Mg-Si alloy severely deformed by HPT. J. Mater. Sci. 48, 4573 (2013).

    CAS  Google Scholar 

  72. T.G. Langdon: A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437 (1994).

    CAS  Google Scholar 

  73. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).

    CAS  Google Scholar 

  74. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia: Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr. Mater. 49, 297 (2003).

    CAS  Google Scholar 

  75. B.Q. Han, F.A. Mohamed, C.C. Bampton, and E.J. Lavernia: Improvement of toughness and ductility of a cryomilled Al-Mg alloy via microstructural modification. Metall. Mater. Trans. A 36, 2081 (2005).

    Google Scholar 

  76. K. Yang, H-J. Fecht, and Y. Ivanisenko: First direct in situ observation of grain boundary sliding in ultrafine grained noble metal. Adv. Eng. Mater. 16, 517 (2014).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the help of Mr. Devi Lal and Mr. Amit Kumar in data analysis and microscopy of fractured surfaces, respectively, and they thank Dr. Sarath Menon of Naval Postgraduate School, Monterey, CA, USA, for providing the cast Al–7%Si samples. This work was partially funded by a Seed Grant (Indian Institute of Science, Bangalore) to PK. The work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mungole, T., Kumar, P., Kawasaki, M. et al. A critical examination of the paradox of strength and ductility in ultrafine-grained metals. Journal of Materials Research 29, 2534–2546 (2014). https://doi.org/10.1557/jmr.2014.272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.272

Navigation