Skip to main content
Log in

Particle size effects on yttrium aluminum garnet (YAG) phase formation by solid-state reaction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The solid-state reaction of yttrium aluminum garnet (YAG, Y3Al5O12) during the heat treatment of Y2O3 and Al2O3 powder mixtures, differing in particle size and size ratio, was quantified using in situ high-temperature x-ray analysis and Rietveld refinement. Y2O3 particle size has the most profound effect on YAG formation. When the Y2O3 particle size was decreased from 5000 to 30 nm (on reaction with 270 nm Al2O3), the YAG formation rate increased from 20 to 48 vol% min−1 over the temperature range of 1350–1450 °C. In this case, the final YAG content increased from 75 to 91 vol%. A simple model that includes the reactant particle coordination number, and thus particle size ratio, shows that when the size ratio (dA/dY) is >1 diffusion through the alumina powder is rate controlling whereas when the ratio is <1, diffusion through the yttria, intermediate phases, and YAG is rate controlling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A. Ikesue: Polycrystalline Nd:YAG ceramics lasers. Opt. Mater. 19, 183 (2002).

    Article  CAS  Google Scholar 

  2. J.M. Robertson and M.W. van Tol: Epitaxially grown monocrystalline garnet cathode-ray tube phosphor screens. Appl. Phys. Lett. 35(5), 471 (1980).

    Article  Google Scholar 

  3. W. Koechner: Solid-State Laser Engineering (Springer-Verlag, Berlin, Heidelberg, Germany, 1999); pp. 28–53.

    Book  Google Scholar 

  4. B. Cockayne: The uses and enigmas of the Al2O3-Y2O3 phase system. J. Less-Common Met. 114(1), 199 (1985).

    Article  CAS  Google Scholar 

  5. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida: Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J. Am. Ceram. Soc. 74(4), 1033 (1995).

    Article  Google Scholar 

  6. J. Su, Q.L. Zhang, S.F. Shao, W.P. Liu, S.M. Wan, and S.T. Yin: Phase transition, structure and luminescence of Eu:YAG nanophosphors by co-precipitation method. J. Alloys Compd. 470(1–2), 306 (2009).

    Article  CAS  Google Scholar 

  7. S-H. Lee, S. Kochawattana, G.L. Messing, J.Q. Dumm, G. Quarles, and V. Castillo: Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics. J. Am. Ceram. Soc. 89(6), 1945 (2006).

    Article  CAS  Google Scholar 

  8. J. Li, J. Liu, B. Liu, W. Liu, Y. Zeng, X. Ba, T. Xie, B. Jiang, Q. Liu, Y. Pan, X. Feng, and J. Guo: Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics. J. Eur. Ceram. Soc. 34(10), 2497 (2014)

    Article  CAS  Google Scholar 

  9. I. Sakaguchi, H. Haneda, J. Tanaka, and T. Yanagitani: Effect of composition on the oxygen tracer diffusion in transparent yttrium aluminium garnet (YAG) ceramics. J. Am. Ceram. Soc. 79(6), 1627 (1996).

    Article  CAS  Google Scholar 

  10. H. Haneda: Role of diffusion phenomena in the processing of ceramics. J. Ceram. Soc. Jpn. 111(7), 439 (2003).

    Article  CAS  Google Scholar 

  11. M. Jimenez-Melendo, H. Haneda, and H. Nozawa: Ytterbium cation diffusion in yttrium aluminum garnet (YAG)–Implications for creep mechanisms. J. Am. Ceram. Soc. 84(10), 2356 (2001).

    Article  CAS  Google Scholar 

  12. T.A. Parthasarathy, T-I. Mah, and L.E. Matson: Creep behavior of an Al2O3-Y3Al5O12 eutectic composite. Ceram. Eng. Sci. Proc. 11(9–10), 1628 (1990).

    Article  CAS  Google Scholar 

  13. T.A. Parthasarathy, T-I. Mah, and K. Keller: Creep mechanism of polycrystalline yttrium aluminum garnet. J. Am. Ceram. Soc. 75(7), 1756 (1992).

    Article  CAS  Google Scholar 

  14. V.B. Glushkova, V.A. Krzhizhanovskaya, O.N. Egorova, Y.P. Udalov, and L.P. Kachalova: Interaction of yttrium and aluminum oxides. Inorg. Mater. 19(1), 80 (1983).

    Google Scholar 

  15. S.A. Speakman, J.W. Richardson, B.J. Mitchell, and S.T. Misture: In-situ diffraction study of Ba2In2O5. Solid State Ionics 149(3–4), 247 (2002).

    Article  CAS  Google Scholar 

  16. D. Bouvard and F.F. Lange: Correlation between random dense parking and random dense packing for determining particle coordination number in binary systems. Phys. Rev. A 45(8), 5690 (1992).

    Article  CAS  Google Scholar 

  17. G.Y. Onoda and E.G. Liniger: Experimental determination of the random-parking limit in two dimensions. Phys. Rev. A 33(1), 715 (1986).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by VLOC Inc. through funds received from VLOC’s prime contract #N66001-00-c-6008. SK is particularly grateful for the support of a Royal Thai Scholarship. We also thank E. Meuschke and Baikowski Malakoff Inc. for supplying the BA-15 alumina powder used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Messing.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupp, E.R., Kochawattana, S., Lee, SH. et al. Particle size effects on yttrium aluminum garnet (YAG) phase formation by solid-state reaction. Journal of Materials Research 29, 2303–2311 (2014). https://doi.org/10.1557/jmr.2014.224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.224

Navigation