Skip to main content

Advertisement

Log in

Selective laser sintering of polymer biocomposites based on polymethyl methacrylate

  • Polymer
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Materials and processes used for medical applications should have specific attributes. For bone repair and reconstruction, controlled open porosity and osteoconductivity are essential apart from mechanical strength and biocompatibility. Several forms of calcium phosphates are often used for these applications, considering properties similar to bone minerals, but often in combinations with other biopolymers. Polymethyl methacrylate (PMMA) and β-tricalcium phosphate (β-TCP) are identified as a suitable combination for the current research, considering specific properties both individually and in combinations, when processed by different means for specific medical applications. Specific responses of the biocomposite material formed by mechanically mixing the two materials in the powder form to selective laser sintering (SLS) under varying conditions are investigated. The results indicate the suitability of the material system for SLS, while controlled porosity and mechanical property combinations are possible by optimizing material composition and process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. P. Ducheyne, K. Healy, D.E. Hutmacher, D.W. Grainger, and C.J. Kirkpatrick, eds.: Comprehensive Biomaterials, Vol. 3 (Elsevier, New York, NY, 2011); pp. 257–276.

    Google Scholar 

  2. B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons, eds.: Biomaterials Science, An Introduction to Materials in Medicine, 3rd ed. (Elsevier, New York, NY, 2013); p. 1573.

    Google Scholar 

  3. F. Barrère, C.A. van Blitterswijk, and K. de Groot: Bone regeneration molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomed. 1(3), 317–332Sep 2006.

    Google Scholar 

  4. J.R. Porter, T.T. Ruckh, and K.C. Popat: Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnol. Prog. 25(6), 1539–1560 (2009).

    CAS  Google Scholar 

  5. A.C. Taş, F. Korkusuz, M. Timuçin, and N. Akkaş: An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. J. Mater. Sci.: Mater. Med. 8, 91–96 (1997).

    Google Scholar 

  6. M. Kitamura, C. Ohtsuki, S. Ogata, M. Kamitakahara, and M. Tanihara: Microstructure and bioresorbable properties of α-TCP ceramic porous body fabricated by direct casting method. Mater. Trans. 45, 983–988 (2004).

    Article  CAS  Google Scholar 

  7. J.O. Hollinger and G.C. Battistone: Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin. Orthop. Relat. Res. 207, 290–305 (1986).

    CAS  Google Scholar 

  8. X. Yu, E.A. Botchwey, E.M. Levine, S.R. Pollack, and C.T. Laurencin: Bioreactor-based bone tissue engineering: The influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc. Natl. Acad. Sci. U. S. A. 101, 11203–11208 (2004).

    Article  CAS  Google Scholar 

  9. G. Lewis: Properties of antibiotic-loaded acrylic bone cements for use in cemented arthroplasties. J. Biomed. Mater. Res., Part B 89B(2), 558–574 (2009), ISSN: 1552-4973.

    Article  CAS  Google Scholar 

  10. M. Puska, A. Kokkari, T. Närhi, and P. Vallittu: Mechanical properties of oligomer modified acrylic bone cement. Biomaterials 24(3), 417–425 (2003), ISSN: 0142-9612.

    Article  CAS  Google Scholar 

  11. B. Flautre, M. Descamps, C. Delecourt, M. Blary, and P. Hardouin: Porous HA ceramic for bone replacement: Role of the pores and interconnections–experimental study in the rabbit. J. Mater. Sci.: Mater. Med. 12, 679–682 (2001).

    CAS  Google Scholar 

  12. G. Daculsi and N. Passuti: Effect of the macroporosity for osseous substitution of phosphate calcium ceramics. Biomaterials 11, 86–87 (1990).

    CAS  Google Scholar 

  13. G. Daculsi, N. Passuti, S. Martin, C. Deudon, R.Z. Legeros, and S. Raher: Macroporous calcium-phosphate ceramic for long-bone surgery in humans and dogs clinical and histological study. J. Biomed. Mater. Res. 24, 379–396 (1990).

    Article  CAS  Google Scholar 

  14. C.P.A.T. Klein, K. de Groot, C. Weiqun, L. Yubao, and Z. Xingdong: Osseous substance formation in calcium phosphate ceramics in soft tissues. Biomaterials 15, 31–34 (1994).

    Article  CAS  Google Scholar 

  15. M. Descamps, O. Richart, P. Hardouin, J.C. Hornez, and A. Leriche: Synthesis of macroporous b-tricalcium phosphate with controlled porous architectural. Ceram. Int. 34, 1131–1137 (2008).

    Article  CAS  Google Scholar 

  16. T. Adachi, Y. Osako, M. Tanaka, M. Hojo, and S.J. Hollister: Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27, 3964–3972 (2006).

    Article  CAS  Google Scholar 

  17. S. Saha and S. Pal: Mechanical properties of bone cement; a review. J. Biomed. Mater. Res. 18, 435–462 (1984).

    Article  CAS  Google Scholar 

  18. W.J. Malony, M.A. Jasty, A. Rosenberg, and W.H. Harris: Bone lysis in well-fixed cemented femoral component. J. Bone Jt. Surg. 72B, 966–970 (1990).

    Article  Google Scholar 

  19. I. Ahato: Reverse engineering the ceramic art of algae. Science 286, 1059–1061 (1999).

    Google Scholar 

  20. F. Popişter, D. Popescu, and D. Hurgoiu: A new method for using reverse engineering in case of ceramic tiles. Qual. Access Success 13, 409–412 (2012).

    Google Scholar 

  21. D. Bombač, M. Brojan, P. Fajfar, F. Kosel, and R. Turk: Review of materials in medical applications. RMZ–Mater. Geoenviron. 54(4), 471–499 (2007).

    Google Scholar 

  22. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, and S. Das: Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26, 4817–4827 (2005).

    Article  CAS  Google Scholar 

  23. K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang, M.S. Abu Bakar, and S.W. Cha: Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24(18), 3115–3123 (2003).

    Article  CAS  Google Scholar 

  24. C.K. Chua, K.F. Leong, F.E. Wiria, K.C. Tan, and M. Chandrasekara: Fabrication of poly(vinyl alcohol)/hydroxyapatite in tissue engineering. In Proceedings of the International Conference on Competitive manufacturing, World Scientific Publishing Company: Steilhenbosch, 2004.

    Google Scholar 

  25. S. Das, S.J. Hollister, C. Flanagan, A. Adewunmi, K. Bark, C. Chen, K. Ramaswamy, D. Rose, and E. Widjaja: Computational design freeform fabrication and testing of Nylon-6 tissue engineering scaffolds. In Rapid prototyping technologies. Mater. Res. Soc. Symp. Proc. 758, 3–5 December 2002, 205–210.

    Article  Google Scholar 

  26. N.K. Vail, L.D. Swain, W.C. Fox, T.B. Aufdlemorte, G. Lee, and J.W. Barlow: Materials for bio-medical applications. Mater. Des. 20, 123–132 (1999).

    Article  CAS  Google Scholar 

  27. L. Hao, M.M. Savalani, Y. Zhang, K.E. Tanner, and R.A. Harris: Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development. Proc. Inst. Mech. Eng. H 220, 521 (2006).

    Article  CAS  Google Scholar 

  28. F. Alessandro, R. Luca: Characterization of laser energy consumption in sintering of polymer based powders. J. Mater. Process. Technol. 212, 917–926 (2012).

    Article  Google Scholar 

  29. J.D. Williams and C.R. Dechard: Advances in modelling the effects of selected parameters on the SLS process. Rapid Prototyping J. 4, 90–100 (1998).

    Article  Google Scholar 

  30. I. Shishkovsky, Yu. Morozov, and I. Smurov: Nanostructural self-organization under selective laser sintering of exothermic powder mixtures. J. Appl. Surf. Sci. 225, 5565–5568 (2009).

    Article  Google Scholar 

  31. J.T. Rimell and P.M. Marquis: Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J. Biomed. Mater. Res. 53, 414–420 (2000).

    Article  CAS  Google Scholar 

  32. E. Berry, J.M. Brown, M. Connell, C.M. Craven, N.D. Efford, A. Radjenovic, and M.A. Smith: Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med. Eng. Phys. 19, 90–96 (1997).

    Article  CAS  Google Scholar 

  33. B. Caulfield, P.E. McHugh, and S. Lohfeld: Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J. Mater. Process. Technol. 182, 477–488 (2007).

    Article  CAS  Google Scholar 

  34. N. Woicke, T. Wagner, and P. Eyerer: Carbon assisted laser sintering of thermoplastic polymers. In Annual Technical Conference–ANTEC, Boston, MA, 2005.

  35. V.M. Khumalo, J. Karger Kocsis, and R. Thoman: Polyethylene synthetic boehmite alumina nanocomposites: Structure, thermal and rheological properties. Express Polym. Lett. 5, 264–274 (2010).

    Article  Google Scholar 

  36. L. Di Silvio, M.J. Dalby, and W. Bonfield: Osteoblast behaviour on HA/PE composite surfaces with different HA volumes. Biomaterials 23, 101–107 (2002).

    Article  Google Scholar 

  37. B. Kasemo and J. Lausmaa: Surface science aspects on inorganic biomaterials. Crit. Rev. Biocompat. 2, 335–380 (1986).

    Google Scholar 

  38. E.K. Sichel and M. Dekker, eds.: Carbon Black-Polymer Composites: The Physics of Electrically Conducting Composites (Plastics Engineering). (Dekker, New York, NY, 1982).

    Google Scholar 

  39. J.P. Vacanti, M.A. Morse, W.M. Saltzman, A.J. Domb, A. Perez-Atayde, and R. Langer: Selective cell transplantation using bioabsorbable artificial polymers as matrices. J. Pediatr. Surg. 23, 3–9 (1988).

    Article  CAS  Google Scholar 

  40. A.G. Mikos, G. Sarakinos, M.D. Lyman, D.E. Ingber, J.P. Vacanti, and R. Langer: Prevascularization of porous biodegradable polymers. Biotechnol. Bioeng. 42, 716–723 (1993).

    Article  CAS  Google Scholar 

  41. B.D. Boyan, T.W. Hummert, D.D. Dean, and Z. Schwartz: Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17, 137–146 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat Singamneni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velu, R., Singamneni, S. Selective laser sintering of polymer biocomposites based on polymethyl methacrylate. Journal of Materials Research 29, 1883–1892 (2014). https://doi.org/10.1557/jmr.2014.211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.211

Navigation