Skip to main content
Log in

Compositionally graded metals: A new frontier of additive manufacturing

  • Metal
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The current work provides an overview of the state-of-the-art in polymer and metal additive manufacturing and provides a progress report on the science and technology behind gradient metal alloys produced through laser deposition. The research discusses a road map for creating gradient metals using additive manufacturing, demonstrates basic science results obtainable through the methodology, shows examples of prototype gradient hardware, and suggests that Compositionally Graded Metals is an emerging field of metallurgy research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. N. Hopkinson, R. Hague, and P. Dickens: Rapid Manufacturing: An Industrial Revolution for a Digital Age (Wiley-Blackwell, Berlin, Germany, 2005).

    Book  Google Scholar 

  2. R.I. Campbell, R.J.M. Hague, B. Sener, and P.W. Wormald: The potential for the bespoke industrial designer. Des. J. 6, 24–34 (2003).

    Google Scholar 

  3. R.J.M. Hague, R.I. Campbell, and P.M. Dickens: Implications on design of rapid manufacturing. Proc. Inst. Mech. Eng., Part C 217, 25–30 (2003).

    Article  Google Scholar 

  4. I. Gibson, D.W. Rosen, and B. Stucker: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing (Springer, New York, 2010).

    Book  Google Scholar 

  5. E.C. Santos, M. Shiomi, K. Osakada, and T. Laoui: Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf. 46, 1459–1468 (2006).

    Article  Google Scholar 

  6. M.L. Griffith, M.T. Ensz, J.D. Puskar, C.V. Robino, J.A. Brooks, J.A. Philliber, J.E. Smugeresky, and W.H. Hofmeister: Understanding the microstructure and properties of components fabricated by laser engineered net shaping (LENS). MRS Proc. 625, 9 (2011).

    Article  Google Scholar 

  7. A. Crespo and R. Vilar: Finite element analysis of the rapid manufacturing of Ti–6Al–4V parts by laser powder deposition. Scr. Mater. 63, 140–143 (2010).

    Article  CAS  Google Scholar 

  8. S. Kelly and S. Kampe: Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization. Metall. Mater. Trans. 35, 1861–1867 (2004).

    Article  Google Scholar 

  9. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker: Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 20–32 (2009).

    Article  CAS  Google Scholar 

  10. H. Tan, F. Zhang, J. Chen, X. Lin, and W. Huang: Microstructure evolution of laser solid forming of Ti-Al-V ternary system alloys from blended elemental powders. Chin. Opt. Lett. 9, 051403–051406 (2011).

    Article  Google Scholar 

  11. K.I. Schwendner, R. Banerjee, P.C. Collins, C.A. Brice, and H.L. Fraser: Direct laser deposition of alloys from elemental powder blends. Scr. Mater. 45, 1123–1129 (2001).

    Article  CAS  Google Scholar 

  12. L. Xue and M.U. Islam: Free-form laser consolidation for producing metallurgically sound and functional components. J. Laser Appl. 12, 160 (2000).

    Article  CAS  Google Scholar 

  13. R. Banerjee, P.C. Collins, D. Bhattacharyya, S. Banerjee, and H.L. Fraser: Microstructural evolution in laser deposited compositionally graded α/β titanium-vanadium alloys. Acta Mater. 51, 3277–3292 (2003).

    Article  CAS  Google Scholar 

  14. P.C. Collins, R. Banerjee, S. Banerjee, and H.L. Fraser: Laser deposition of compositionally graded titanium–vanadium and titanium–molybdenum alloys. Mater. Sci. Eng., A 352, 118–128 (2003).

    Article  Google Scholar 

  15. M.B. Bever and P.F. Duwez: Gradients in composite materials. Mater. Sci. Eng. 10, 1–8 (1972).

    Article  CAS  Google Scholar 

  16. M. Shen and M.B. Bever: Gradients in polymeric materials. J. Mater. Sci. 7, 741–746 (1972).

    Article  CAS  Google Scholar 

  17. K.M.B. Taminger and R.A. Hafley: Electron beam freeform fabrication: A rapid metal deposition process. In Proc. of the 3rd Ann. Auto. Comp. Conf., 2003; pp. 1–6.

  18. J.K. Watson, K.M.B. Taminger, R.A. Hafley, and D.D. Petersen: Development of a prototype electron beam freeform fabrication system. In Proc. of 13th SFF Symp., 2002; pp. 458–465.

  19. C.A. Brice and D.S. Henn: Rapid prototyping and freeform fabrication via electron beam welding deposition. Proceeding of International Institute of Welding Conference, Copenhagen, Denmark (2002).

  20. D.C. Hofmann, J-Y. Suh, A. Wiest, G. Duan, M-L. Lind, M.D. Demetriou, and W.L. Johnson: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 451 (2008), 1085–1089.

    Article  CAS  Google Scholar 

  21. D.C. Hofmann, J-Y. Suh, A. Wiest, M-L. Lind, M.D. Demetriou, and W.L. Johnson: Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. U. S. A. 105, 20136–20140 (2008).

    Article  CAS  Google Scholar 

  22. Z-K. Liu: First-principles calculations, and CALPHAD modeling of thermodynamics. J. Phase Equilib. Diffus. 30, 517–534 (2009).

    Article  CAS  Google Scholar 

  23. J-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Thermo-Calc & DICTRA, computational tools for materials science. CALPHAD 26, 273–312 (2002).

    Article  CAS  Google Scholar 

  24. L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagrams with Special Reference to Refractory Metal (Academic Press, New York, NY, 1970).

    Google Scholar 

  25. See for example, http://www.nasa.gov/exploration/systems/sls/3d-printed-rocket-injector.html#.U5IRMU1OVaQ, NASA Test Limits of 3-D Printing with Powerful Rocket Engine Check, 2013.

Download references

ACKNOWLEDGMENTS

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA) and funded through the Office of the Chief Technologist. The authors acknowledge A. Eilenberg, G. Agnes, A. Shapiro, C. Bradford, P. Gardner, C. Morandi, J. Mulder, P. Willis, and RPM Innovations for useful discussions. Richard Otis and Zi-Kui Liu acknowledge partial funding of this work by the Open Manufacturing Program of the Defense Advanced Research Projects Agency’s Center for Innovative Materials Processing through Direct Digital Deposition at Penn State under Grant N00014-12-1-0840 from the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas C. Hofmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, D.C., Kolodziejska, J., Roberts, S. et al. Compositionally graded metals: A new frontier of additive manufacturing. Journal of Materials Research 29, 1899–1910 (2014). https://doi.org/10.1557/jmr.2014.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.208

Navigation