Skip to main content
Log in

Emerging materials for microelectromechanical systems at elevated temperatures

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Extension of microelectromechanical systems (MEMS) into more extreme operating conditions will require a wider range of material properties than are currently available in conventional systems. Successful integration of new materials is dependent on concurrent development of compatible fabrication routes and scale appropriate evaluation techniques. This review focuses on emerging material classes that have potential to replace silicon-based MEMS in elevated temperature applications. Basic silicon mechanical properties and micromachining methods are reviewed to provide context for developing material systems such as silicon carbide, silicon carbonitrides, and several nickel-based alloys. Potential improvements in strength, thermal stability, and reliability are juxtaposed with fabrication, reproducibility, and economic feasibility issues that must also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S.M. Spearing: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48(1), 179–196 (2000).

    CAS  Google Scholar 

  2. M. Esashi: Revolution of sensors in micro-electromechanical systems. Jpn. J. Appl. Phys. 51(8), 8 (2012).

    Google Scholar 

  3. S.A. Wilson, R.P.J. Jourdain, Q. Zhang, R.A. Dorey, C.R. Bowen, M. Willander, Q.U. Wahab, S.M. Al-hilli, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B.R. Samel, W. van der Wijngaart, E.W.H. Jager, D. Carlsson, Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M. Wendlandt, C. Rusu, and K. Persson: New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng., R 56(1–6), 1–129 (2007).

    Google Scholar 

  4. L. Weiss: Power production from phase change in MEMS and micro devices, a review. Int. J. Therm. Sci. 50(5), 639–647 (2011).

    Google Scholar 

  5. K.F. Jensen: Silicon-based microchemical systems: Characteristics and applications. MRS Bull. 31(2), 101–107 (2006).

    CAS  Google Scholar 

  6. J. Ponmozhi, C. Frias, T. Marques, and O. Frazao: Smart sensors/actuators for biomedical applications: Review. Measurement 45(7), 1675–1688 (2012).

    Google Scholar 

  7. K. Ashton: That Internet of Things Thing: In the real world, things matter more than ideas. RFID J. 22, June, 2009.

  8. A. Witvrouw: CMOS-MEMS integration today and tomorrow. Scr. Mater. 59(9), 945–949 (2008).

    CAS  Google Scholar 

  9. T.E. Buchheit, D.A. LaVan, J.R. Michael, T.R. Christenson, and S.D. Leith: Microstructural and mechanical properties investigation of electrode posited and annealed LIGA nickel structures. Metall. Mater. Trans. A 33(3), 539–554 (2002).

    Google Scholar 

  10. H.S. Cho, K.J. Hemker, K. Lian, J. Goettert, and G. Dirras: Measured mechanical properties of LIGA Ni structures. Sens. Actuators, A 103(1–2), 59–63 (2003).

    CAS  Google Scholar 

  11. S.A. Jacobson and A.H. Epstein: An informal survey of power MEMS. In Proceedings of the International Symposium on Micro-mechanical Engineering, Vol. 12, 2003; pp. 513–519.

    Google Scholar 

  12. S.K. Chou, W.M. Yang, K.J. Chua, J. Li, and K.L. Zhang: Development of micro power generators — A review. Appl. Energy 88(1), 1–16 (2011).

    CAS  Google Scholar 

  13. A.H. Epstein: Millimeter-scale, MEMS gas turbine engines. In Proceedings of ASME Turbo Expo Collocated with the 2003 International Joint Power Generation Conference, American Society of Mechanical Engineers, 2003; pp. 669–696.

  14. M. Liamini, H. Shahriar, S. Vengallatore, and L.G. Fréchette: Design methodology for a Rankine microturbine: Thermomechanical analysis and material selection. J. Microelectromech. Syst. 20(1), 339–351 (2011).

    CAS  Google Scholar 

  15. P.G. Neudeck, R.S. Okojie, and C. Liang-Yu: High-temperature electronics — A role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065–1076 (2002).

    Google Scholar 

  16. K.J. Hemker and W.N. Sharpe: Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 37, 93–126 (2007).

    CAS  Google Scholar 

  17. M.J. Madou: Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).

  18. K.D. Wise: Special issue on integrated sensors, microactuators, & microsystems (MEMS). Proc. IEEE (1998).

  19. S.R. Jensen, A.D. Yalçinkaya, S.R. Jacobsen, T. Rasmussen, F.E. Rasmussen, and O. Hansen: Deep reactive ion etching for high aspect ratio microelectromechanical components. Phys. Scr. 2004(T114), 188 (2004).

    Google Scholar 

  20. M. Esashi and T. Ono: From MEMS to nanomachine. J. Phys. D: Appl. Phys. 38(13), R223–R230 (2005).

    CAS  Google Scholar 

  21. B.Q. Wu, A. Kumar, and S. Pamarthy: High aspect ratio silicon etch: A review. J. Appl. Phys. 108(5), 20 (2010).

    Google Scholar 

  22. W.N. Sharpe: Mechanical properties of MEMS materials. In The MEMS Handbook, Vol. 3, 2002; pp. 1–33.

    Google Scholar 

  23. W.N. Sharpe Jr., Y. Bin, R. Vaidyanathan, and R.L. Edwards: Measurements of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon. In Proceedings of the Tenth IEEE International Workshop on Microelectromechanical Systems, MEMS’ 97, 1997; pp. 424–429.

  24. S. Jayaraman, R. Edwards, and K. Hemker: Relating mechanical testing and microstructural features of polysilicon thin films. J. Mater. Res. 14(03), 688–697 (1999).

    CAS  Google Scholar 

  25. F.W. DelRio, L.H. Friedman, M.S. Gaither, W.A. Osborn, and R.F. Cook: Decoupling small-scale roughness and long-range features on deep reactive ion etched silicon surfaces. J. Appl. Phys. 114(11), 113506 (2013).

    Google Scholar 

  26. R. Müller-Fiedler and V. Knoblauch: Reliability aspects of microsensors and micromechatronic actuators for automotive applications. Microelectron. Reliab. 43(7), 1085–1097 (2003).

    Google Scholar 

  27. S. Nakao, T. Ando, M. Shikida, and K. Satol: Mechanical properties of a micron-sized SCS film in a high-temperature environment. J. Micromech. Microeng. 16(4), 715–720 (2006).

    CAS  Google Scholar 

  28. W.N. Sharpe: Tensile testing of MEMS materials at high temperatures. In Advances in Experimental Mechanics IV, Vol. 3–4, J.M. Dulieu-Barton and S. Quinn, eds., Trans Tech Publications Ltd: Stafa-Zurich, 2005; pp. 59–64.

    Google Scholar 

  29. T. Ando, M. Shikida, and K. Sato: Tensile-mode fatigue testing of silicon films as structural materials for MEMS. Sens. Actuators, A 93(1), 70–75 (2001).

    CAS  Google Scholar 

  30. C.L. Muhlstein, R.T. Howe, and R.O. Ritchie: Fatigue of polycrystalline silicon for microelectromechanical system applications: Crack growth and stability under resonant loading conditions. Mech. Mater. 36(1–2), 13–33 (2004).

    Google Scholar 

  31. D.H. Alsem, O.N. Pierron, E.A. Stach, C.L. Muhlstein, and R.O. Ritchie: Mechanisms for fatigue of micron-scale silicon structural films. Adv. Eng. Mater. 9(1–2), 15–30 (2007).

    CAS  Google Scholar 

  32. H. Kahn, A. Avishai, R. Ballarini, and A. Heuer: Surface oxide effects on failure of polysilicon MEMS after cyclic and monotonic loading. Scr. Mater. 59(9), 912–915 (2008).

    CAS  Google Scholar 

  33. H. Kahn, R. Ballarini, and A. Heuer: Dynamic fatigue of silicon. Curr. Opin. Solid State Mater. Sci. 8(1), 71–76 (2004).

    CAS  Google Scholar 

  34. A.D. Romig, M.T. Dugger, and P.J. McWhorter: Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability. Acta Mater. 51(19), 5837–5866 (2003).

    CAS  Google Scholar 

  35. C.A. Zorman and M. Mehregany: Materials for microelectromechanical systems. The MEMS Handbook (CRC Press, 2001).

  36. W.N. Sharpe: Mechanical properties of MEMS materials. The MEMS Handbook (CRC Press, 2001).

  37. J. El-Rifai, S. Sedky, R. Van Hoof, S. Severi, D. Lin, S. Sangameswaran, R. Puers, C. Van Hoof, and A. Witvrouw: SiGe MEMS at processing temperatures below 250 °C. Sens. Actuators, A 188, 230–239 (2012).

    CAS  Google Scholar 

  38. P.M. Sarro: Silicon carbide as a new MEMS technology. Sens. Actuators, A 82(1–3), 210–218 (2000).

    CAS  Google Scholar 

  39. W.N. Sharpe Jr., G. Beheim, N. Nemeth, L. Evans, and O. Jadaan: Strength of single-crystal silicon carbide microspecimens at room and high temperature. In Proceedings of the 2005 SEM Annual Conf., Portland, OR, 2005.

  40. W-X. Wang, L-S. Niu, Y-Y. Zhang, and E-Q. Lin: Tensile mechanical behaviors of cubic silicon carbide thin films. Comput. Mater. Sci. 62, 195–202 (2012).

    CAS  Google Scholar 

  41. M. Mehregany and C.A. Zorman: SiC MEMS: Opportunities and challenges for applications in harsh environments. Thin Solid Films 355, 518–524 (1999).

    Google Scholar 

  42. K.M. Jackson: Fracture strength, elastic modulus and Poisson’s ratio of polycrystalline 3C thin-film silicon carbide found by microsample tensile testing. Sens. Actuators, A 125(1), 34–40 (2005).

    CAS  Google Scholar 

  43. M. Mehregany, C.A. Zorman, N. Rajan, and C.H. Wu: Silicon carbide MEMS for harsh environments. Proc. IEEE 86(8), 1594–1610 (1998).

    CAS  Google Scholar 

  44. C.A. Zorman and R.J. Parro: Micro- and nanomechanical structures for silicon carbide MEMS and NEMS. Phys. Status Solidi B 245(7), 1404–1424 (2008).

    CAS  Google Scholar 

  45. L. Jiang and R. Cheung: A review of silicon carbide development in MEMS applications. Int. J. Comput. Mater. Sci. Surf. Eng. 2(3), 227–242 (2009).

    CAS  Google Scholar 

  46. C.R. Stoldt, C. Carraro, W.R. Ashurst, D. Gao, R.T. Howe, and R. Maboudian: A low-temperature CVD process for silicon carbide MEMS. Sens. Actuators, A 97–8, 410–415 (2002).

    Google Scholar 

  47. M. Avram, A. Avram, A. Bragaru, C. Bangtao, D.P. Poenar, and C. Iliescu: Low stress PECVD amorphous silicon carbide for MEMS applications. In Proceedings of the Semiconductor Conference (CAS), 2010 International, 2010; pp. 239–242.

  48. F. Zhao, M.M. Islam, and C.F. Huang: Photoelectrochemical etching to fabricate single-crystal SiC MEMS for harsh environments. Mater. Lett. 65(3), 409–412 (2011).

    CAS  Google Scholar 

  49. T.K. Hossain, S. MacLaren, J.M. Engel, C. Liu, I. Adesida, and R.S. Okojie: The fabrication of suspended micromechanical structures from bulk 6H-SiC using an ICP-RIE system. J. Micromech. Microeng. 16(4), 751 (2006).

    CAS  Google Scholar 

  50. N. Rajan, M. Mehregany, C.A. Zorman, S. Stefanescu, and T.P. Kicher: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines. J. Microelectromech. Syst. 8(3), 251–257 (1999).

    CAS  Google Scholar 

  51. T.H. Yoon, H.J. Lee, J. Yan, and D.P. Kim: Fabrication of SiC-based ceramic microstructures from preceramic polymers with sacrificial templates and lithographic techniques — A review. J. Ceram. Soc. Jpn. 114(1330), 473–479 (2006).

    CAS  Google Scholar 

  52. T. Ishikawa, T. Namazu, K. Yoshiki, S. Inoue, and Y. Hasegawa: Polycarbosilane-derived silicon carbide MEMS component fabricated by slip casting with SU8 micro mold. In Proceedings of the Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, 2010; pp. 416–419.

  53. V. Cimalla, J. Pezoldt, and O. Ambacher: Group III nitride and SiC based MEMS and NEMS: Materials properties, technology and applications. J. Phys. D: Appl. Phys. 40(20), 6386 (2007).

    CAS  Google Scholar 

  54. S. Pearton, F. Ren, Y-L. Wang, B. Chu, K. Chen, C. Chang, W. Lim, J. Lin, and D. Norton: Recent advances in wide bandgap semiconductor biological and gas sensors. Prog. Mater. Sci. 55(1), 1–59 (2010).

    Google Scholar 

  55. S. Davies, T.S. Huang, M.H. Gass, A.J. Papworth, T.B. Joyce, and P.R. Chalker: Fabrication of GaN cantilevers on silicon substrates for microelectromechanical devices. Appl. Phys. Lett. 84(14), 2566–2568 (2004).

    CAS  Google Scholar 

  56. Y. Wang, T. Sasaki, T. Wu, F. Hu, and K. Hane: Comb-drive GaN micro-mirror on a GaN-on-silicon platform. J. Micromech. Microeng. 21(3), 035012 (2011).

    Google Scholar 

  57. F. Goericke, M. Chan, G. Vigevani, I. Izyumin, B. Boser, and A. Pisano: High temperature compatible aluminum nitride resonating strain sensor. In Proceedings of the Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 2011; pp. 1994–1997.

  58. F.T. Goericke, G. Vigevani, I.I. Izyumin, B.E. Boser, and A.P. Pisano: Novel thin-film piezoelectric aluminum nitride rate gyroscope. In Proceedings of the Ultrasonics Symposium (IUS), 2012 IEEE International, 2012; pp. 1067–1070.

  59. S.J. Pearton, B.S. Kang, K. Suku, F. Ren, B.P. Gila, C.R. Abernathy, L. Jenshan, and S.N.G. Chu: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J. Phys. Condens. Matter 16(29), R961 (2004).

    CAS  Google Scholar 

  60. L.A. Liew, W.G. Zhang, L.N. An, S. Shah, R.L. Luo, Y.P. Liu, T. Cross, M.L. Dunn, V. Bright, J.W. Daily, R. Raj, and K. Anseth: Ceramic MEMS — New materials, innovative processing and future applications. Am. Ceram. Soc. Bull. 80(5), 25–30 (2001).

    CAS  Google Scholar 

  61. P. Colombo, G. Mera, R. Riedel, and G.D. Soraru: Polymer-derived ceramics: 40 Years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93(7), 1805–1837 (2010).

    CAS  Google Scholar 

  62. J. Bill and F. Aldinger: Precursor-derived covalent ceramics. Adv. Mater. 7(9), 775–787 (1995).

    CAS  Google Scholar 

  63. L-A. Liew, Y. Liu, R. Luo, T. Cross, L. An, V.M. Bright, M.L. Dunn, J.W. Daily, and R. Raj: Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sens. Actuators, A 95(2–3), 120–134 (2002).

    CAS  Google Scholar 

  64. L.A. Liew, W.G. Zhang, V.M. Bright, L.N. An, M.L. Dunn, and R. Raj: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique. Sens. Actuators, A 89(1–2), 64–70 (2001).

    CAS  Google Scholar 

  65. M. Schulz, M. Börner, J. Göttert, T. Hanemann, J. Haußelt, and G. Motz: Cross linking behavior of preceramic polymers effected by UV- and synchrotron radiation. Adv. Eng. Mater. 6(8), 676–680 (2004).

    CAS  Google Scholar 

  66. M. Schulz: Polymer derived ceramics in MEMS/NEMS — A review on production processes and application. Adv. Appl. Ceram. 108(8), 454–460 (2009).

    CAS  Google Scholar 

  67. P. Greil: Active-filler-controlled pyrolysis of preceramic polymers. J. Am. Ceram. Soc. 78(4), 835–848 (1995).

    CAS  Google Scholar 

  68. P. Greil: Near net shape manufacturing of polymer derived ceramics. J. Eur. Ceram. Soc. 18(13), 1905–1914 (1998).

    CAS  Google Scholar 

  69. V.M. Bright, R. Raj, M.L. Dunn, and J.W. Daily: Injectable ceramic microcast silicon carbonitride (SiCN) microelectromechanical system (MEMS) for extreme temperature environments with extension: Micro packages for nano-devices. Colorado University at Boulder Office of Contracts and Grants, 2004.

  70. S. Jung, D. Seo, S.J. Lombardo, Z.C. Feng, J.K. Chen, and Y. Zhang: Fabrication using filler controlled pyrolysis and characterization of polysilazane PDC RTD arrays on quartz wafers. Sens. Actuators, A 175, 53–59 (2012).

    CAS  Google Scholar 

  71. Y.P. Liu, L.A. Liew, R.L. Luo, L.N. An, M.L. Dunn, V.M. Bright, J. W. Daily, and R. Raj: Application of microforging to SiCN MEMS fabrication. Sens. Actuators, A 95(2–3), 143–151 (2002).

    CAS  Google Scholar 

  72. D. Zhang, B. Su, and T.W. Button: Microfabrication of three-dimensional, free-standing ceramic MEMS components by soft moulding. Adv. Eng. Mater. 5(12), 924–927 (2003).

    CAS  Google Scholar 

  73. D-H. Lee, K-H. Park, L-Y. Hong, and D-P. Kim: SiCN ceramic patterns fabricated by soft lithography techniques. Sens. Actuators, A 135(2), 895–901 (2007).

    CAS  Google Scholar 

  74. D. Probst, H. Hoche, Y. Zhou, R. Hauser, T. Stelzner, H. Scheerer, E. Broszeit, C. Berger, R. Riedel, H. Stafast, and E. Koke: Development of PE-CVD Si/C/N: H films for tribological and corrosive complex-load conditions. Surf. Coat. Technol. 200(1–4), 355–359 (2005).

    CAS  Google Scholar 

  75. S. Ma, B. Xu, G. Wu, Y. Wang, F. Ma, D. Ma, K. Xu, and T. Bell: Microstructure and mechanical properties of SiCN hard films deposited by an arc enhanced magnetic sputtering hybrid system. Surf. Coat. Technol. 202(22–23), 5379–5382 (2008).

    CAS  Google Scholar 

  76. A.S. Bhattacharyya and S.K. Mishra: Micro/nanomechanical behavior of magnetron sputtered Si-C-N coatings through nanoindentation and scratch tests. J. Micromech. Microeng. 21(1), 015011 (2011).

    Google Scholar 

  77. D.N. Hutchison, N.B. Morrill, Q. Aten, B.W. Turner, B.D. Jensen, L.L. Howell, R.R. Vanfleet, and R.C. Davis: Carbon nanotubes as a framework for high-aspect-ratio MEMS fabrication. J. Microelectromech. Syst. 19(1), 75–82 (2010).

    CAS  Google Scholar 

  78. C.K. Malek and V. Saile: Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review. Microelectron. J. 35(2), 131–143 (2004).

    Google Scholar 

  79. F. Ebrahimi, G.R. Bourne, M.S. Kelly, and T.E. Matthews: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11(3), 343–350 (1999).

    CAS  Google Scholar 

  80. K.J. Hemker and H. Last: Microsample tensile testing of LIGA nickel for MEMS applications. Mater. Sci. Eng., A 319, 882–886 (2001).

    Google Scholar 

  81. J.G. Collins, M. Wright, and C.L. Muhlstein: Cyclic stabilization of electrodeposited nickel structural films. J. Microelectromech. Syst. 20(3), 753–763 (2011).

    CAS  Google Scholar 

  82. T.J. Rupert and C.A. Schuh: Mechanically driven grain boundary relaxation: A mechanism for cyclic hardening in nanocrystalline Ni. Philos. Mag. Lett. 92(1), 20–28 (2012).

    CAS  Google Scholar 

  83. T.R. Christenson, T.E. Buchheit, D.T. Schmale, and R.J. Bourcier: Mechanical and metallographic characterization of LIGA fabricated nickel and 80%Ni-20%Fe permalloy. MRS Online Proc. Libr. 518(1), (1998).

  84. T. Yamasaki: High-strength nanocrystalline Ni-W alloys produced by electrodeposition and their embrittlement behaviors during grain growth. Scr. Mater. 44(8–9), 1497–1502 (2001).

    CAS  Google Scholar 

  85. T.E. Buchheit, S.J. Glass, J.R. Sullivan, S.S. Mani, D.A. Lavan, T.A. Friedmann, and R. Janek: Micromechanical testing of MEMS materials. J. Mater. Sci. 38(20), 4081–4086 (2003).

    CAS  Google Scholar 

  86. S. Goods, J. Kelly, and N. Yang: Electrodeposited nickel-manganese: An alloy for microsystem applications. Microsyst. Technol. 10(6–7), 498–505 (2004).

    CAS  Google Scholar 

  87. J. Kelly, S. Goods, and N. Yang: High performance nanostructured Ni-Mn alloy for microsystem applications. Electrochem. Solid-State Lett. 6(6), C88–C91 (2003).

    CAS  Google Scholar 

  88. S.J. Hearne, M.P. de Boer, P.G. Kotula, C.W. Dyck, S.M. Foiles, D.M. Follstaedt, and T.E. Buchheit: Novel In Situ Mechanical Testers to Enable Integrated Metal Surface Micro-Machines (Sandia National Laboratories, 2005).

  89. A.A. Talin, E.A. Marquis, S.H. Goods, J.J. Kelly, and M.K. Miller: Thermal stability of Ni-Mn electrodeposits. Acta Mater. 54(7), 1935–1947 (2006).

    CAS  Google Scholar 

  90. G.D. Hibbard, K.T. Aust, and U. Erb: Thermal stability of electrodeposited nanocrystalline Ni–Co alloys. Mater. Sci. Eng, A 433(1–2), 195–202 (2006).

    Google Scholar 

  91. M. Haj-Taieb, A. Haseeb, J. Caulfield, K. Bade, J. Aktaa, and K.J. Hemker: Thermal stability of electrodeposited LIGA Ni-W alloys for high temperature MEMS applications. Microsyst. Technol. 14(9–11), 1531–1536 (2008).

    CAS  Google Scholar 

  92. S.J. Suresha, M. Haj-Taieb, K. Bade, J. Aktaa, and K.J. Hemker: The influence of tungsten on the thermal stability and mechanical behavior of electrodeposited nickel MEMS structures. Scr. Mater. 63(12), 1141–1144 (2010).

    CAS  Google Scholar 

  93. A. Haseeb and K. Bade: LIGA fabrication of nanocrystalline Ni-W alloy micro specimens from ammonia-citrate bath. Microsyst. Technol. 14(3), 379–388 (2008).

    CAS  Google Scholar 

  94. Y. Shacham-Diamand and Y. Sverdlov: Electrochemically deposited thin film alloys for ULSI and MEMS applications. Microelectron. Eng. 50(1–4), 525–531 (2000).

    CAS  Google Scholar 

  95. P. Choi, T. Al-Kassab, F. Gärtner, H. Kreye, and R. Kirchheim: Thermal stability of nanocrystalline nickel-18 at.% tungsten alloy investigated with the tomographic atom probe. Mater. Sci. Eng., A 353(1–2), 74–79 (2003).

    Google Scholar 

  96. C.A. Schuh, T.G. Nieh, and H. Iwasaki: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51(2), 431–443 (2003).

    CAS  Google Scholar 

  97. C.F. Keimel, M.F. Aimi, S. Bansal, R.R. Corderman, K.V.S.R. Kishore, E.S. Reddy, A. Saha, K. Subramanian, P. Thakre, and A.D. Corwin: Switch Structure and Method. US Patent 2011/0067983, March 24, 2011.

  98. R.L. Fleischer: Solid-solution hardening. In The Strengthening of Metals. (Reinhold Publishing Co., New York, NY, 1964).

    Google Scholar 

  99. T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59(4), 1619–1631 (2011).

    CAS  Google Scholar 

  100. A.J. Detor, M.K. Miller, and C.A. Schuh: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86(28), 4459–4475 (2006).

    CAS  Google Scholar 

  101. A.J. Detor and C.A. Schuh: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22(11), 3233–3248 (2007).

    CAS  Google Scholar 

  102. C. Borgia, T. Scharowsky, A. Furrer, C. Solenthaler, and R. Spolenak: A combinatorial study on the influence of elemental composition and heat treatment on the phase composition, microstructure and mechanical properties of Ni-W alloy thin films. Acta Mater. 59(1), 386–399 (2011).

    CAS  Google Scholar 

  103. H. Miyamoto, S. Takehara, T. Uenoya, H. Fujiwara, and T. Goto: Nanocrystalline nickel dispersed with nano-size WO3 particles synthesized by electrodeposition. J. Mater. Sci. 47(12), 4798–4804 (2012).

    CAS  Google Scholar 

  104. J. Balaraju, N. Manikandanath, and V. William Grips: Phase transformation behavior of nanocrystalline Ni-W-P alloys containing various W and P contents. Surf. Coat. Technol. 206(10), 2682–2689 (2013).

    Google Scholar 

  105. F. He, J. Yang, T. Lei, and C. Gu: Structure and properties of electrodeposited Fe-Ni-W alloys with different levels of tungsten content: A comparative study. Appl. Surf. Sci. 253(18), 7591–7598 (2007).

    CAS  Google Scholar 

  106. G. Goward and D. Boone: Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys. Oxid. Met. 3(5), 475–495 (1971).

    CAS  Google Scholar 

  107. R. Mevrel, C. Duret, and R. Pichoir: Pack cementation processes. Mater. Sci. Technol. 2(3), 201–206 (1986).

    CAS  Google Scholar 

  108. J. Nicholls and D. Stephenson: High temperature coatings for gas turbines. Met. Mater. 7(3), 156–163 (1991).

    CAS  Google Scholar 

  109. A.M. Hodge and D.C. Dunand: Synthesis of nickel-aluminide foams by pack-aluminization of nickel foams. Intermetallics 9(7), 581–589 (2001).

    CAS  Google Scholar 

  110. D.C. Dunand, A.M. Hodge, and C. Schuh: Pack aluminisation kinetics of nickel rods and foams. Mater. Sci. Technol. 18(3), 326–332 (2002).

    CAS  Google Scholar 

  111. S.J. Johnson, B. Tryon, and T.M. Pollock: Post-fabrication vapor phase strengthening of nickel-based sheet alloys for thermostructural panels. Acta Mater. 56(17), 4577–4584 (2008).

    CAS  Google Scholar 

  112. S.J. Perez-Bergquist, N. Vermaak, and T.M. Pollock: High-temperature performance of actively cooled vapor phase strengthened nickel-based thermostructural panels. AIAA J. 49(5), 1080–1086 (2011).

    Google Scholar 

  113. D.E. Burns, Y. Zhang, M. Teutsch, K. Bade, J. Aktaa, and K.J. Hemker: Development of Ni-based superalloys for microelectromechanical systems. Scr. Mater. 67(5), 459–462 (2012).

    CAS  Google Scholar 

  114. D.M. Burns: Processing and Characterization of Ni-based Superalloy Micro-components and Films for MEMS Applications. Doctoral Dissertation, Department of Mechanical Engineering. Johns Hopkins University, Baltimore, MD, 2012.

    Google Scholar 

  115. H. Choe and D.C. Dunand: Synthesis, structure, and mechanical properties of Ni-Al and Ni-Cr-Al superalloy foams. Acta Mater. 52(5), 1283–1295 (2004).

    CAS  Google Scholar 

  116. L. Liu, Y. Li, and F. Wang: Influence of grain size on the corrosion behavior of a Ni-based superalloy nanocrystalline coating in NaCl acidic solution. Electrochim. Acta 53(5), 2453–2462 (2008).

    CAS  Google Scholar 

  117. L. Hanyi, W. Fuhui, X. Bangjie, and Z. Lixin: High-temperature oxidation resistance of sputtered micro-grain superalloy K38G. Oxid. Met. 38(3), 299–307 (1992).

    Google Scholar 

  118. H. Lou, F. Wang, S. Zhu, B. Xia, and L. Zhang: Oxide formation of K38G superalloy and its sputtered micrograined coating. Surf. Coat. Technol. 63(1–2), 105–114 (1994).

    CAS  Google Scholar 

  119. D.M. Burns, Y. Zhang, T.P. Weihs, and K.J. Hemker: Sputtered Ni-based superalloys for microscale devices. In Proceedings of the Superalloys 2012: 12th International Symposium on Superalloys, E.S. Huron, ed., Champion, PA, 2012; pp. 569–576.

  120. A. Oradei-Basile and J.F. Radavich: A current TTT diagram for wrought alloy 718. Superalloys 718(625), 325–335 (1991).

    Google Scholar 

  121. W.N. Sharpe: Murray lecture — Tensile testing at the micrometer scale: Opportunities in experimental mechanics. Exp. Mech. 43(3), 228–237 (2003).

    Google Scholar 

  122. R.G. Azevedo, D.G. Jones, A.V. Jog, B. Jamshidi, D.R. Myers, C. Li, F. Xiao-An, M. Mehregany, M.B.J. Wijesundara, and A.P. Pisano: A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens. J. 7(4), 568–576 (2007).

    CAS  Google Scholar 

  123. C. Förster, V. Cimalla, V. Lebedev, J. Pezoldt, K. Brueckner, R. Stephan, M. Hein, E. Aperathitis, and O. Ambacher: Group III-nitride and SiC based micro- and nanoelectromechanical resonators for sensor applications. Phys. Status Solidi A 203(7), 1829–1833 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Hemker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krogstad, J.A., Keimel, C. & Hemker, K.J. Emerging materials for microelectromechanical systems at elevated temperatures. Journal of Materials Research 29, 1597–1608 (2014). https://doi.org/10.1557/jmr.2014.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.183

Navigation