Skip to main content
Log in

Materials for high speed sintering

  • Ceramic
  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High Speed Sintering (HSS) is a novel additive manufacturing technology which currently uses Nylon 12 as the standard feedstock material. To expand the number of processable materials, the preferred characteristics of polymeric powder as a feedstock powder are presented, appropriate materials identified, parts made, and mechanical properties measured. Two commercially available laser sintering (LS) grade powders previously untested for HSS were selected, DuraForm® HST10 and ALM TPE 210-S. Tensile test specimens were manufactured using each material and mechanical properties analyzed and compared to the manufacturers’ specification for LS. Tensile test specimens built using DuraForm® PA show higher tensile strength and elongation at break than LS whereas DuraForm® HST10 shows somewhat reduced tensile strength but slightly increased elongation at break. ALM TPE 210-S shows elongation at break of more than double that of LS demonstrating the capability of HSS to process viscous materials. The results indicate that HSS is capable of processing LS grade polymeric powders and may extend beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. N. Hopkinson and P. Erasenthiran: High speed sintering–Early research into a new rapid manufacturing process. In Solid Freeform Fabrication Symposium (University of Texas, Austin, 2004); pp. 312–320.

    Google Scholar 

  2. H.R. Thomas, N. Hopkinson, and P. Erasenthiran: High speed sintering–Continuing research into a new rapid manufacturing process. In Solid Freeform Fabrication Symposium (University of Texas, Austin, 2006); pp. 682–691.

    Google Scholar 

  3. N. Hopkinson, R. Hague, and P. Dickens: Rapid Manufacturing: An Industrial Revolution for the Digital Age (John Wiley & Sons, West Sussex, UK, 2006).

    Google Scholar 

  4. S. Gogolewski, K. Czerntawska, and M. Gastorek: Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 12 (polylaurolactam). Colloid Polym. Sci. 258(10), 1130–1136 (1980).

    Article  CAS  Google Scholar 

  5. Y. Kong and J.N. Hay: The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. Eur. Polym. J. 39(8), 1721–1727 (2003).

    Article  CAS  Google Scholar 

  6. M. Vasquez, B. Haworth, and N. Hopkinson: Optimum sintering region for laser sintered nylon-12. Proc. Inst. Mech. Eng., Part B 225(12), 2240–2248 (2011).

    Article  CAS  Google Scholar 

  7. C.E. Majewski, D. Oduye, H.R. Thomas, and N. Hopkinson: Effect of infra-red power level on the sintering behaviour in the high speed sintering process. Rapid Prototyping J. 14(3), 155–160 (2008).

    Article  Google Scholar 

  8. S.K. Tiwari and S. Pande: Material properties and selection for selective laser sintering process. Int. J. Manuf. Tech. Manag. 27(4), 198–217 (2013).

    Article  Google Scholar 

  9. Y. Shi, Z. Li, H. Sun, S. Huang, and F. Zeng: Effect of the properties of the polymer materials on the quality of selective laser sintering parts. Proc. Inst. Mech. Eng., Part L 218(3), 247–252 (2004).

    CAS  Google Scholar 

  10. C.A. Harper: Handbook of Plastics, Elastomers, and Composites (McGraw-Hill, New York, NY, 2002).

    Google Scholar 

  11. T. Wohlers: Wohlers Report 2007: State of the Industry: Annual Worldwide Progress Report (Wohlers Associates, Inc., Fort Collins, CO, 2007).

    Google Scholar 

  12. C.E. Majewski, B.S. Hobbs, and N. Hopkinson: Effect of bed temperature and infra-red lamp power on the mechanical properties of parts produced using high-speed sintering. Virtual Phys. Prototyp. 2(2), 103–110 (2007).

    Article  Google Scholar 

  13. I. Gibson and D. Shi: Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyping J. 3(4), 129–136 (1997).

    Article  Google Scholar 

  14. B. Caulfield, P. McHugh, and S. Lohfeld: Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J. Mater. Process. Technol. 182(1), 477–488 (2007).

    Article  CAS  Google Scholar 

  15. H. Zarringhalam, N. Hopkinson, N.F. Kamperman, and J.J. De Vlieger: Effects of processing on microstructure and properties of SLS Nylon 12. Mater. Sci. Eng., A 435, 172–180 (2006).

    Article  Google Scholar 

  16. ASTM D638: Standard Test Method for Tensile Properties of Plastics.

  17. C. Majewski, H. Zarringhalam, and N. Hopkinson: Effect of the degree of particle melt on mechanical properties in selective laser-sintered Nylon-12 parts. Proc. Inst. Mech. Eng., Part B 222(9), 1055–1064 (2008).

    Article  Google Scholar 

  18. C. Majewski, H. Zarringhalam, and N. Hopkinson: Effects of degree of particle melt and crystallinity in SLS Nylon-12 parts. In 19th Solid Freeform Fabrication Symposium (University of Texas, Austin, 2008).

    Google Scholar 

  19. E. Moeskops, N. Kamperman, and B. van de Vorst: Creep behaviour of polyamide in selective laser sintering. In Proceedings of the 15th Solid Freeform Fabrication Symposium, ASTM D638-10, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA (University of Texas, Austin, 2004).

    Google Scholar 

  20. B. Haworth, N. Hopkinson, D. Hitt, and X. Zhong: Shear viscosity measurements on Polyamide-12 polymers for laser sintering. Rapid Prototyping J. 19(1), 28–36 (2013).

    Article  Google Scholar 

  21. J. Frenkel: Viscous flow of crystalline bodies under the action of surface tension. J. Phys. 9, 385 (1945).

    Google Scholar 

  22. G.M. Vasquez: Analysis and Development of New Materials for Polymer Laser Sintering (Loughborough University, UK, 2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Ellis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, A., Noble, C.J., Hartley, L. et al. Materials for high speed sintering. Journal of Materials Research 29, 2080–2085 (2014). https://doi.org/10.1557/jmr.2014.156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.156

Navigation