Skip to main content
Log in

Field emission from laser cut CNT fibers and films

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Field emission (FE) measurements are reported from carbon nanotube (CNT) fibers and laser-patterned free standing films fabricated by direct online condensation from a floating catalyst chemical vapor deposition reactor. Fiber and film cathodes showed stable emission in the 1–2 mA current (I) range at maximum cathode temperatures less than 1000 °C; film cathodes show localized heating at the triangular tips and higher maximum temperatures than the fibers. Fowler-Nordheim (FN) analysis indicated a change in the morphology of the emitters with increasing external electrical field (Eext). Fiber cathode I-Eext data are interpreted as FN emission from the fiber tip which is eventually limited by space-charge effects. At higher Eext, FN emission from the fiber sidewall occurs. The single fiber cathode stopped emitting abruptly when field induced self-heating effects became significant. For CNT films, self-heating effects can destroy a portion of the film, but FE can still occur from other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. W.I. Milne, K.B.K. Teo, E. Minoux, O. Groening, L. Gangloff, L. Hudanski, J-P. Schnell, D. Dieumegard, F. Peauger, I.Y.Y. Bu, M.S. Bell, P. Legagneux, G. Hasko, and G.A.J. Amaratunga: Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. B 24, 345 (2006).

    Article  CAS  Google Scholar 

  2. G. Sanborn, S. Turano, P. Collins, and W.J. Ready: A thin film triode type carbon nanotube field emission cathode. Appl. Phys. A 110, 99 (2013).

    Article  CAS  Google Scholar 

  3. H. Manohara, R. Toda, R.H. Lin, A. Liao, and M. Mojarradi: Carbon nanotube-based digital vacuum electronics and miniature instrumentation for space exploration. In Proceedings of the SPIE, Vol. 7594, H. Schenk and W. Piyawattanametha, eds. (2010).

  4. H. Manohara, R. Toda, R. Lin, A. Liao, M. Bronikowski, and P. Siegel: Carbon nanotube bundle array cold cathodes for THz vacuum tube sources. J. Infrared, Millimeter, Terahertz Waves 30, 1338 (2009).

    CAS  Google Scholar 

  5. T. Tyler, O. Shenderova, M. Ray, J. Dalton, J. Wang, R. Outlaw, M. Zhu, X. Zhao, G. McGuire, and B.C. Holloway: Back-gated milliampere-class field emission device based on carbon nanosheets. J. Vac. Sci. Technol. B 24, 2295 (2006).

    Article  CAS  Google Scholar 

  6. V.A. Krivchenko, A.A. Pilevsky, A.T. Rakhimov, B.V. Seleznev, N.V. Suetin, M.A. Timofeyev, A.V. Bespalov, and O.L. Golikova: Nanocrystalline graphite: Promising material for high current field emission cathodes. J. Appl. Phys. 107, 014315 (2010).

    Article  Google Scholar 

  7. J-M. Bonard, J-P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, and A. Chatelain: Field emission from single-wall carbon nanotube films. Appl. Phys. Lett. 73, 918 (1998).

    Article  CAS  Google Scholar 

  8. J-M. Bonard, F. Maier, T. Stöckli, A. Châtelain, W.A. de Heer, J-P. Salvetat, and L. Forró: Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy 73, 7 (1998).

    Article  CAS  Google Scholar 

  9. J. Lee, Y. Jung, J. Song, J.S. Kim, G-W. Lee, H.J. Jeong, and Y. Jeong: High-performance field emission from a carbon nanotube carpet. Carbon 50, 3889 (2012).

    Article  CAS  Google Scholar 

  10. G. Chen, D.H. Shin, T. Iwasaki, H. Kawarada, and C.J. Lee: Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays. Nanotechnology 19, 415703 (2008).

    Article  Google Scholar 

  11. X. Calderón-Colón, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou: A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology 20, 325707 (2009).

    Article  Google Scholar 

  12. N. Perea-López, B. Rebollo-Plata, J.A. Briones-León, A. Morelos-Gómez, D. Hernández-Cruz, G.A. Hirata, V. Meunier, A.R. Botello-Méndez, J-C. Charlier, B. Maruyama, E. Muñoz-Sandoval, F. López-Urías, M. Terrones, and H. Terrones: Millimeter-long carbon nanotubes: Outstanding electron-emitting sources. ACS Nano 5, 5072 (2011).

    Article  Google Scholar 

  13. Y.L. Li, I.A. Kinloch, and A.H. Windle: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276 (2004).

    Article  CAS  Google Scholar 

  14. C. Paukner and K.K. Koziol: Ultra-pure single wall carbon nanotube fibers continuously spun without promoter. Nature Sci. Rep. (2013, submitted).

  15. N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F. ter Waarbeek, J.J. de Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M. J. Otto, and M. Pasquali: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339, 182 (2013).

    Article  CAS  Google Scholar 

  16. A.A. Zakhidov, R. Nanjundaswamy, A.N. Obraztsov, M. Zhang, S. Fang, V.I. Klesch, R.H. Baughman, and A.A. Zakhidov: Field emission of electrons by carbon nanotube twist-yarns. Appl. Phys. A 88, 593 (2007).

    Article  CAS  Google Scholar 

  17. P. Liu, Y. Wei, K. Liu, L. Liu, K. Jiang, and S. Fan: New-type planar field emission display with superaligned carbon nanotube yarn emitter. Nano Lett. 12, 2391 (2012).

    Article  CAS  Google Scholar 

  18. Y. Wei, D. Weng, Y. Yang, X. Zhang, K. Jiang, L. Liu, and S. Fan: Efficient fabrication of field electron emitters from the multiwalled carbon nanotube yarns. Appl. Phys. Lett. 89, 063101 (2006).

    Article  Google Scholar 

  19. G. Chen, D.H. Shin, S. Roth, and C.J. Lee: Field emission characteristics of point emitters fabricated by a multiwalled carbon nanotube yarn. Nanotechnology 20, 315201 (2009).

    Article  Google Scholar 

  20. D. Shiffler, S. Fairchild, W. Tang, B. Maruyama, K. Golby, M. LaCour, M. Pasquali, and N. Lockwood: Demonstration of an acid-spun single-walled nanotube fiber cathode. IEEE Trans. Plasma Sci. 40, 1871 (2012).

    Article  CAS  Google Scholar 

  21. V. Guglielmotti, E. Tamburri, S. Orlanducci, M.L. Terranova, M. Rossi, M. Notarianni, S.B. Fairchild, B. Maruyama, N. Behabtu, C.C. Young, and M. Pasquali: Macroscopic self-standing SWCNT fibres as efficient electron emitters with very high emission current for robust cold cathodes. Carbon 52, 356 (2013).

    Article  CAS  Google Scholar 

  22. S.B. Fairchild, T.C. Back, J.B. Ferguson, J. Boeckl, H. Koemer, B. Maruyama, M. Lange, N.P. Lockwood, M.M. Cahay, N. Behabtu, C.C. Young, K. Averett, P.T. Murray, and M. Pasquali: Morphology dependent field emission of carbon nanotube fibers. Adv. Funct. Mater. (2013, submitted).

  23. C. Li, Y. Zhang, M.T. Cole, S.G. Shivareddy, J.S. Barnard, W. Lei, B. Wang, D. Pribat, G.A.J. Amaratunga, and W.I. Milne: Hot electron field emission via individually transistor-ballasted carbon nanotube arrays. ACS Nano 6, 3236 (2012).

    Article  CAS  Google Scholar 

  24. W.J. Kim, J.S. Lee, K.Y. Song, C.N. Chu, and Y.H. Kim: Better than 10 mA field emission from an isolated structure emitter of a metal oxide/CNT composite. ACS Nano 5, 429 (2011).

    Article  CAS  Google Scholar 

  25. K.A. Dean, O. Groening, O.M. Kuttel, and L. Schlapbach: Nanotube electronic states observed with thermal field emission electron spectroscopy. Appl. Phys. Lett. 75, 2773 (1999).

    Article  CAS  Google Scholar 

  26. P.T. Murray, T.C. Back, M.M. Cahay, S.B. Fairchild, B. Maruyama, N.P. Lockwood, and M. Pasquali: Evidence for adsorbate-enhanced field emission from carbon nanotube fibers. Appl. Phys. Lett. 103, 053113 (2013).

    Article  Google Scholar 

  27. K.L. Jensen: Scattering and the relationship between quantum efficiency and emittance. J. Appl. Phys. 113, 056101 (2013).

    Article  Google Scholar 

  28. K.L. Jensen: Space charge, emittance, trajectories, and the modeling of field emitter arrays. J. Vac. Sci. Technol. B 29, 02B101 (2011).

    Article  Google Scholar 

  29. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern: Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76, 2071 (2000).

    Article  CAS  Google Scholar 

  30. J-M. Bonard, T. Stöckli, F. Maier, W.A. de Heer, A. Châtelain, J-P. Salvetat, and L. Forró: Field-emission-induced luminescence from carbon nanotubes. Phys. Rev. Lett. 81, 1441 (1998).

    Article  CAS  Google Scholar 

  31. C.D. Child: Discharge from hot CaO. Phys. Rev. (Series I) 32, 492 (1911).

    Article  CAS  Google Scholar 

  32. I. Langmuir: The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes. Phys. Rev. 21, 419 (1923).

    Article  Google Scholar 

  33. M.M. Cahay, P.T. Murray, T.C. Back, G.J. Gruen, S.B. Fairchild, J. Boeckl, J. Bulmer, and K.K. Koziol: Hysteresis during field emission from carbon nanotube fibers synthesized by chemical vapor deposition. Nano Lett. (2013, submitted).

  34. K.A. Dean, P. von Allmen, and B.R. Chalamala: Three behavioral states observed in field emission from single-walled carbon nanotubes. J. Vac. Sci. Technol. B 17, 1959 (1999).

    Article  CAS  Google Scholar 

  35. J.H. Ryu, N.Y. Bae, H.M. Oh, O. Zhou, J. Jang, and K.C. Park: Stabilized electron emission from silicon coated carbon nanotubes for a high-performance electron source. J. Vac. Sci. Technol. B 29, 02B120 (2011).

    Article  Google Scholar 

  36. C. Li, Y. Zhang, M. Mann, D. Hasko, W. Lei, B. Wang, D. Chu, D. Pribat, G.A.J. Amaratunga, and W.I. Milne: High emission current density, vertically aligned carbon nanotube mesh, field emitter array. Appl. Phys. Lett. 97, 113107 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Air Force contract FA8650-11-D-5401 at the Materials & Manufacturing Directorate (AFRL/RXAP) The authors thank John Luginsland at AFOSR and Scott Dudley and Victor Putz of EOARD for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Terrence Murray.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairchild, S.B., Bulmer, J.S., Sparkes, M. et al. Field emission from laser cut CNT fibers and films. Journal of Materials Research 29, 392–402 (2014). https://doi.org/10.1557/jmr.2013.322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.322

Navigation