Skip to main content
Log in

Vertical graphene by plasma-enhanced chemical vapor deposition: Correlation of plasma conditions and growth characteristics

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Vertically aligned graphene was grown by plasma-enhanced chemical vapor deposition using methane feedstock. Optical emission spectroscopy (OES) was used to monitor the plasma species, and Raman spectroscopy was used for characterizing the properties of as-grown vertically aligned graphene. OES-derived information on plasma species, such as C, C2, CH, and H, are correlated with the properties of the vertically aligned graphene. Graphene grown at 250 W and 15 sccm exhibited the lowest amount of defects. Although OES peak intensities occurred at the highest power and lowest flow conditions, the OES peak ratios of plasma species had a greater dependence on flow rate and exhibited a saddle point in the atomic C/H ratio corresponding to optimal growth involving the lowest amount of overall defects. Plasma diagnostics provides a valuable approach to optimize growth characteristics and material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. W.B. Choi and J.W. Lee: Graphene: Synthesis and Applications (CRC Press, Boca Raton, FL, 2012).

    Google Scholar 

  2. Y. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties and applications. Adv. Mater. 22, 3906 (2010).

    Article  CAS  Google Scholar 

  3. M.H. Rümmeli, C.G. Rocha, F. Ortmann, I. Ibrahim, H. Sevincli, F. Börrnert, J. Kuntsmann, A. Backmatiuk, M. Potschke, M. Shiraishi, M. Meyyappan, B. Buchner, S. Roche, and G. Cuniberti: Graphene: Piecing it together. Adv. Mater. 23, 4471 (2011).

    Article  CAS  Google Scholar 

  4. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, and S.S. Pei: Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008).

    Article  CAS  Google Scholar 

  5. L.G. De Arco, Y. Zhang, A. Kumar, and C. Zhou: Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans. Nanotechnol. 8, 135 (2009).

    Article  Google Scholar 

  6. B.J. Lee, H.Y. Yu, and G.H. Jeong: Controlled synthesis of monolayer graphene toward transparent flexible conductive film application. Nanoscale Res. Lett. 5, 1768 (2010).

    Article  CAS  Google Scholar 

  7. M.H. Rummeli, A. Bachmatiuk, A. Scott, F. Bornett, J.H. Warner, V. Hoffman, J.H. Lin, G. Cunibert, and B. Buckner: Direct lower-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 4, 4206 (2013).

    Article  CAS  Google Scholar 

  8. M. Hiramatsu, K. Shiji, H. Amano, and M. Hori: Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004).

    Article  CAS  Google Scholar 

  9. M. Hiramatsu and M. Hori: Fabrication of carbon nanowalls using novel plasma processing. Jpn. J. Appl. Phys. 45, 5522 (2006).

    Article  CAS  Google Scholar 

  10. J.J. Wang, M.Y. Zhu, R.A. Outlaw, X. Zhao, D.M. Manos, B.C. Holloway, and V.P. Mammana: Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 85, 1265 (2004).

    Article  CAS  Google Scholar 

  11. J.J. Wang, M. Zhu, R.A. Outlaw, X. Zhao, D.M. Manos, and B.C. Holloway: Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42, 2867 (2004).

    Article  CAS  Google Scholar 

  12. M. Zhu, J.J. Wang, B.C. Holloway, R.A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D.M. Manos: A mechanism for carbon nanosheet formation. Carbon 45, 2229 (2009).

    Article  CAS  Google Scholar 

  13. A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, and G.V. Tendeloo: Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19, 305604 (2008).

    Article  CAS  Google Scholar 

  14. H. Chatei, M. Belmahi, M.B. Assouar, L. Le Brizoual, P. Bourson, and J. Bougdira: Growth and characterization of carbon nanostructures obtained by MPACVD system using CH4/CO2 gas mixture. Diamond Relat. Mater. 15, 1041 (2006).

    Article  CAS  Google Scholar 

  15. B.L. French, J.J. Wang, M.Y. Zhu, and B.C. Holloway: Evolution of structure and morphology during plasma-enhanced chemical vapor deposition of carbon nanosheets. Thin Solid Films 494, 105 (2006).

    Article  CAS  Google Scholar 

  16. K. Teii, S. Shimada, M. Nakashima, and A.T.H. Chuang: Synthesis and electrical characterization of n-type carbon nanowalls. J. Appl. Phys. 106, 084303 (2009).

    Article  CAS  Google Scholar 

  17. G.D. Yuan, W.J. Zhang, Y. Yang, Y.B. Yang, Y.Q. Li, J.X. Wang, X.M. Meng, Z.B. He, C.M.L. Wu, I. Belloy, C.S. Lee, and S.T. Lee: Graphene sheets via microwave chemical vapor deposition. Chem. Phys. Lett. 467, 361 (2009).

    Article  CAS  Google Scholar 

  18. M. Meyyappan: Plasma nanotechnology: Past, present and the future. J. Phys. D: Appl. Phys. 44, 174002 (2011).

    Article  CAS  Google Scholar 

  19. M. Meyyappan and J.S. Lee: Graphene growth by plasma-enhanced chemical vapor deposition (PECVD), in Plasma Processing of Nanomaterials, edited by R.M. Sankaran (CRC Press, Boca Raton, FL, 2012).

    Google Scholar 

  20. M. Hiramatsu, Y. Kihashi, H. Kondo, and M. Hori: Nucleation control of carbon nanowalls using inductively coupled plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 52, 01AK05 (2013).

    Article  CAS  Google Scholar 

  21. M. Losurdo, M.M. Giangregorio, P. Capezzuto, and G. Bruno: Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836 (2011).

    Article  CAS  Google Scholar 

  22. Y.S. Kim, J.H. Lee, Y.D. Kim, S-K. Jerng, K. Joo, E. Kim, J. Jung, E. Yoon, Y.D. Park, S. Seo, and S-H. Chun: Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition. Nanoscale 5, 1221 (2013).

    Article  CAS  Google Scholar 

  23. I. Levchenko, K. Ostrikov, A.E. Rider, E. Tam, S.V. Vladimirov, and S. Xu: Growth kinetics of carbon nanowall-like structures in low temperature plasmas. Phys. Plasmas 14, 063502 (2007).

    Article  CAS  Google Scholar 

  24. D.B. Hash and M. Meyyappan: Model based comparison of thermal and plasma chemical vapor deposition of carbon nanotubes. J. Appl. Phys. 93, 750 (2003).

    Article  CAS  Google Scholar 

  25. B.A. Cruden, A.M. Cassell, D.B. Hash, and M. Meyyappan: Residual gas analysis of a dc plasma for carbon nanofiber growth. J. Appl. Phys. 96, 5284 (2004).

    Article  CAS  Google Scholar 

  26. D.B. Hash, M.S. Bell, K.B.K. Teo, B.A. Cruden, W.I. Milne, and M. Meyyappan: An investigation of plasma chemistry for DC plasma enhanced chemical vapour deposition, of carbon nanotubes and nanofibers. Nanotechnology 16, 925 (2005).

    Article  CAS  Google Scholar 

  27. B.A. Cruden and M. Meyyappan: Characterization of a radio frequency carbon nanotube growth plasma by ultraviolet adsorption and optical emission spectroscopy. J. Appl. Phys. 97, 084311 (2005).

    Article  CAS  Google Scholar 

  28. M.M. Oye, T.J. Mattord, G.A. Hallock, S.R. Bank, M.A. Wistey, J.M. Reifsnider, A.J. Ptak, H.B. Yuen, J.S. Harris Jr., and A.L. Holmes Jr.: Effects of different plasma species (atomic N, metastable N2*, and ions) on the optical properties of dilute nitride materials grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 91, 191903 (2007).

    Article  CAS  Google Scholar 

  29. M.M. Oye, S.R. Bank, A.J. Ptak, R.C. Reedy, M.S. Goorsky, and A.L. Holmes Jr.: Role of ion damage on unintentional Ca incorporation during the plasma-assisted molecular-beam epitaxy growth of dilute nitrides using N(2)/Ar source gas mixtures. J. Vac. Sci. Technol., B 26, 1058 (2008).

    Article  CAS  Google Scholar 

  30. P.A. Miller, G.A. Hebner, K.E. Greenberg, P.D. Pochan, and B.P. Aragon: An inductively-coupled plasma source for the gaseous electronics conference rf reference cell. J. Res. Nat. Inst. Stand. Technol. 100, 427 (1995).

    Article  CAS  Google Scholar 

  31. K. Ostrikov, E.C. Neyts, and M. Meyyappan: Plasma nanoscience: From nano-solids in plasmas to nano-plasmas in solids. Adv. Phys. 62, 113 (2013).

    Article  CAS  Google Scholar 

  32. L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, and M. Meyyappan: Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 9, 6027 (2002).

    Article  CAS  Google Scholar 

  33. S. Vizireanu, S.D. Stoica, C. Luculescu, L.C. Nistor, B. Mitu, and G. Dinescu: Plasma techniques for nanostructured carbon materials synthesis. A case study: Carbon nanowall growth by low pressure expanding RF plasma. Plasma Sources Sci. Technol. 19 034016 (2010).

    Article  CAS  Google Scholar 

  34. S. Mori and M. Suzuki: Non-catalytic, low-temperature synthesis of carbon nanofibers by plasma-enhanced chemical vapor deposition. In Nanofibers, edited by A. Kumar (InTech, Rijeka, Croatia, 2010).

    Google Scholar 

  35. K.F. Al-Shboul, S.S. Harilal, A. Hassanein, and M. Polek: Dynamics of C2 formation in laser-produced carbon plasma in helium environment. J. Appl. Phys. 109, 053302 (2011).

    Article  CAS  Google Scholar 

  36. R.A. Gottscho and V.M. Donnelly: Optical-emission actinometry and spectral-line shapes in RF glow discharges. J. Appl. Phys. 56, 245 (1984).

    Article  CAS  Google Scholar 

  37. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  38. S. Vizireanu, M.D. Ionita, G. Dinescu, I. Enculescu, M. Baibarac, and I. Baltog: Post-synthesis carbon nanowalls transformation under hydrogen, oxygen, nitrogen, tetrafluoroethane and sulfur hexafluoride plasma treatments. Plasma Processes Polym. 9, 363–370 (2012).

    Article  CAS  Google Scholar 

  39. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj: Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752 (2009).

    Article  CAS  Google Scholar 

  40. R. Lv, Q. Li, A.R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elıas, R. Cruz-Silva, H.R. Gutierrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J-C. Charlier, M. Pan, and M. Terrones: Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2, 586 (2012).

    Article  CAS  Google Scholar 

  41. L.G. Cancado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, and A.C. Ferrari: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

    Article  CAS  Google Scholar 

  42. M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash: Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol. 12, 205 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge technical assistance and insightful discussions with Brett Cruden. Work by E.S.-R. was made possible through a Jenkins/NASA Fellowship. A NASA grant NNX09AQ44A to the University of California Santa Cruz is acknowledged for instruments in the UCSC MACS Facility within the UCSC/NASA-ARC ASL. W.P., D.O., J.P., D.M., B.W., S.T., and T-T.N-D. are student interns. M.W. now with University of Kentucky. T-T.N-D., J.G., and M.O. are employed by ELORET Corporation at NASA Ames.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Oye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandoz-Rosado, E., Page, W., O’Brien, D. et al. Vertical graphene by plasma-enhanced chemical vapor deposition: Correlation of plasma conditions and growth characteristics. Journal of Materials Research 29, 417–425 (2014). https://doi.org/10.1557/jmr.2013.293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.293

Navigation