Skip to main content
Log in

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Grain boundary segregation provides a method for stabilization of nanocrystalline metals—an alloying element that will segregate to the boundaries can lower the grain boundary energy, attenuating the driving force for grain growth. The segregation strength relative to the mixing enthalpy of a binary system determines the propensity for segregation stabilization. This relationship has been codified for the design space of positive enthalpy alloys; unfortunately, quantitative values for the grain boundary segregation enthalpy exist in only very few material systems, hampering the prospect of nanocrystalline alloy design. Here we present a Miedema-type model for estimation of grain boundary segregation enthalpy, with which potential nanocrystalline phase-forming alloys can be rapidly screened. Calculations of the necessary enthalpies are made for ∼2500 alloys and used to make predictions about nanocrystalline stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE II.

Similar content being viewed by others

References

  1. J. Weissmüller: Alloy effects in nanostructures. Nanostruct. Mater. 3(1–6), 261 (1993).

    Article  Google Scholar 

  2. J. Weissmüller: Some basic notions on nanostructured solids. Mater. Sci. Eng., A 179-180(Part 1), 102 (1994).

    Article  Google Scholar 

  3. R. Kirchheim: Grain coarsening inhibited by solute segregation. Acta Mater. 50(2), 413 (2002).

    Article  CAS  Google Scholar 

  4. F. Liu and R. Kirchheim: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264(1–3), 385 (2004).

    Article  CAS  Google Scholar 

  5. R. Kirchheim: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55(15), 5129 (2007).

    Article  CAS  Google Scholar 

  6. S.M. Foiles: Calculation of grain-boundary segregation in Ni-Cu alloys. Phys. Rev. B 40(17), 11502 (1989).

    Article  CAS  Google Scholar 

  7. Y. Purohit, S. Jang, D.L. Irving, C.W. Padgett, R.O. Scattergood, and D.W. Brenner: Atomistic modeling of the segregation of lead impurities to a grain boundary in an aluminum bicrystalline solid. Mater. Sci. Eng., A 493(1–2), 97 (2008).

    Article  CAS  Google Scholar 

  8. A.J. Detor and C.A. Schuh: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system. Acta Mater. 55(12), 4221 (2007).

    Article  CAS  Google Scholar 

  9. M. Menyhard, M. Yan, and V. Vitek: Atomistic vs phenomenological approaches to grain boundary segregation: Computer modeling of Cu-Ag alloys. Acta Metall. et Mater. 42(8), 2783 (1994).

    Article  CAS  Google Scholar 

  10. A. Kirchner and B. Kieback: Thermodynamic model of alloy grain boundaries. Scr. Mater. 64(5), 406 (2011).

    Article  CAS  Google Scholar 

  11. P. Lejcek: Grain Boundary Segregation in Metals Vol. 136 (Springer, Berlin, Germany, 2010).

  12. U. Alber, H. Müllejans, and M. Rühle: Bismuth segregation at copper grain boundaries. Acta Mater. 47(15–16), 4047 (1999).

    Article  CAS  Google Scholar 

  13. L.S. Chang and K.B. Huang: Temperature dependence of the grain boundary segregation of Bi in Ni polycrystals. Scr. Mater. 51(6), 551 (2004).

    Article  CAS  Google Scholar 

  14. Z. Chen, F. Liu, X. Yang, C. Shen, and Y. Fan: Analysis of controlled-mechanism of grain growth in undercooled Fe–Cu alloy. J. Alloys Compd. 509(25), 7109 (2011).

    Article  CAS  Google Scholar 

  15. F. Liu: Grain growth in nanocrystalline Fe-Ag thin film. Mater. Lett. 59(11), 1458 (2005).

    Article  CAS  Google Scholar 

  16. J. Weissmüller, W. Krauss, T. Haubold, R. Birringer, and H. Gleiter: Atomic structure and thermal stability of nanostructured Y-Fe alloys. Nanostruct. Mater. 1(6), 439 (1992).

    Article  Google Scholar 

  17. X. Chen and J. Mao: Thermal stability and tensile properties of electrodeposited Cu-Bi alloy. J. Mater. Eng. Perform. 20(3), 481 (2011).

    Article  CAS  Google Scholar 

  18. K.A. Darling, B.K. VanLeeuwen, C.C. Koch, and R.O. Scattergood: Thermal stability of nanocrystalline Fe-Zr alloys. Mater. Sci. Eng., A 527(15), 3572 (2010).

    Article  CAS  Google Scholar 

  19. C.E. Krill, H. Ehrhardt, and R. Birringer: Thermodynamic stabilization of nanocrystallinity. Z. Metallkd. 96(10), 1134 (2005).

    Article  CAS  Google Scholar 

  20. M. Atwater, H. Bahmanpour, R. Scattergood, and C. Koch: The thermal stability of nanocrystalline cartridge brass and the effect of zirconium additions. J. Mater. Sci. 148(1), 220–226 (2012).

    Article  CAS  Google Scholar 

  21. P. Choi, M. da Silva, U. Klement, T. Al-Kassab, and R. Kirchheim: Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P. Acta Mater. 53(16), 4473 (2005).

    Article  CAS  Google Scholar 

  22. M.A. Atwater, D. Roy, K.A. Darling, B.G. Butler, R.O. Scattergood, and C.C. Koch: The thermal stability of nanocrystalline copper cryogenically milled with tungsten. Mater. Sci. Eng., A 558, 226 (2012).

    Article  CAS  Google Scholar 

  23. M.A. Atwater, R.O. Scattergood, and C.C. Koch: The stabilization of nanocrystalline copper by zirconium. Mater. Sci. Eng., A 559, 250 (2013).

    Article  CAS  Google Scholar 

  24. D. Osmola, P. Nolan, U. Erb, G. Palumbo, and K.T. Aust: Microstructural evolution at large driving forces during grain growth of ultrafine-grained Ni–1.2wt%P. Phys. Status Solidi A 131(2), 569 (1992).

    Article  CAS  Google Scholar 

  25. A.A. Talin, E.A. Marquis, S.H. Goods, J.J. Kelly, and M.K. Miller: Thermal stability of Ni-Mn electrodeposits. Acta Mater. 54(7), 1935 (2006)

    Article  CAS  Google Scholar 

  26. E. Pellicer, A. Varea, K.M. Sivaraman, S. Pane, S. Surinach, M. Dolors Baro, J. Nogues, B.J. Nelson, and J. Sort: Grain boundary segregation and interdiffusion effects in nickel-copper alloys: An effective means to improve the thermal stability of nanocrystalline nickel. ACS Appl. Mater. Interfaces 3(7) 2265 (2011).

    Article  CAS  Google Scholar 

  27. Y.R. Abe, J.C. Holzer, and W.L. Johnson: Formation and stability of nanocrystalline Nb-Cu alloys In Structure and Properties of Interfaces in Materials, edited by C.L. Briant, W.A.T. Clark, and U. Dahmen (Mater. Res. Soc. Symp. Proc. 238, Warrendale, PA 1991), p. 721.

    Google Scholar 

  28. A.J. Detor and C.A. Schuh: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22(11), 3233 (2007).

    Article  CAS  Google Scholar 

  29. B.K. VanLeeuwen, K.A. Darling, C.C. Koch, R.O. Scattergood, and B.G. Butler: Thermal stability of nanocrystalline Pd81Zr19. Acta Mater. 58(12), 4292 (2010).

    Article  CAS  Google Scholar 

  30. M. da Silva, C. Wille, U. Klement, P. Choi, and T. Al-Kassab: Electrodeposited nanocrystalline Co-P alloys: Microstructural characterization and thermal stability. Mater. Sci. Eng., A 445-446, 31 (2007).

    Article  CAS  Google Scholar 

  31. B. Färber, E. Cadel, A. Menand, G. Schmitz, and R. Kirchheim: Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48(3), 789 (2000).

    Article  Google Scholar 

  32. T. Hentschel, D. Isheim, R. Kirchheim, F. Muller, and H. Kreye: Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy. Acta Mater. 48(4), 933 (2000).

    Article  CAS  Google Scholar 

  33. S.C. Mehta, D.A. Smith, and U. Erb: Study of grain growth in electrodeposited nanocrystalline nickel-1.2 wt% phosphorus alloy. Mater. Sci. Eng., A 204(1–2), 227 (1995).

    Article  Google Scholar 

  34. J. Eckert, J.C. Holzer, and W.L. Johnson: Thermal-stability and grain-growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys. J. Appl. Phys. 73(1), 131 (1993).

    Article  CAS  Google Scholar 

  35. E. Rouya, G.R. Stafford, U. Bertocci, J.J. Mallett, R. Schad, M.R. Begley, R.G. Kelly, M.L. Reed, and G. Zangari: Electrodeposition of metastable Au-Ni alloys. J. Electrochem. Soc. 157(7), D396 (2010).

    Article  CAS  Google Scholar 

  36. K.J. Bryden and J.Y. Ying: Thermal stability and hydrogen absorption characteristics of palladium-yttrium nanoalloys. Acta Mater. 44(9), 3847 (1996).

    Article  CAS  Google Scholar 

  37. J.R. Trelewicz and C.A. Schuh: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79(9), 094112 (2009).

    Article  CAS  Google Scholar 

  38. T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337(6097), 951 (2012).

    Article  CAS  Google Scholar 

  39. H.A. Murdoch and C.A. Schuh: Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 61(6), 2121 (2013).

    Article  CAS  Google Scholar 

  40. P. Lejcek and S. Hofmann: Thermodynamic state functions of interfacial segregation and their role in the compensation effect. Rev. Adv. Mater. Sci. 21(1), 27 (2009).

    CAS  Google Scholar 

  41. E.D. Hondros and M.P. Seah: The theory of grain boundary segregation in terms of surface adsorption analogues. Metall. Trans. A 8(9), 1363 (1977).

    Article  Google Scholar 

  42. M.P. Seah: Grain boundary segregation. J. Phys. F: Metal Phys. 10(6), 1043 (1980).

    Article  CAS  Google Scholar 

  43. D. McLean: Grain boundaries in metals (Oxford Clarendon Press, London, UK, 1957).

    Google Scholar 

  44. P. Wynblatt and D. Chatain: Anisotropy of segregation at grain boundaries and surfaces. Metall. Mater. Trans. A 37(9), 2595 (2006).

    Article  Google Scholar 

  45. K.A. Darling, B.K. VanLeeuwen, J.E. Semones, C.C. Koch, R.O. Scattergood, L.J. Kecskes, and S.N. Mathaudhu: Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection. Mater. Sci. Eng., A 528(13–14), 4365 (2011).

    Article  CAS  Google Scholar 

  46. C.L. Briant: Solid solubility and grain boundary segregation. Philos. Mag. Lett. 73(6), 345 (1996).

    Article  CAS  Google Scholar 

  47. J. Friedel: Electronic structure of primary solid solutions in metals. Adv. Phys. 3(12), 446 (1954).

    Article  Google Scholar 

  48. P. Wynblatt and Z. Shi: Relation between grain boundary segregation and grain boundary character in FCC alloys. J. Mater. Sci. 40(11), 2765 (2005).

    Article  CAS  Google Scholar 

  49. D. Udler and D.N. Seidman: Solute segregation at [001] tilt boundaries in dilute f.c.c. alloys. Acta Mater. 46(4), 1221 (1998).

    Article  CAS  Google Scholar 

  50. D. Udler and D.N. Seidman: Solute-atom segregation at (002) twist boundaries in dilute Ni–Pt alloys: Structural/chemical relations. Acta Metall. Mater. 42(6), 1959 (1994).

    Article  CAS  Google Scholar 

  51. D. Udler and D.N. Seidman: Solute-atom segregation at high-angle (002) twist boundaries in dilute Au-Pt alloys. J. Mater. Res. 10(8), 1933 (1995).

    Article  CAS  Google Scholar 

  52. O. Duparc, A. Larere, B. Lezzar, O. Khalfallah, and V. Paidar: Comparison of the intergranular segregation for eight dilute binary metallic systems in the Σ 11′ 332 tilt grain boundary. J. Mater. Sci. 40(12), 3169 (2005).

    Article  CAS  Google Scholar 

  53. Y. Purohit, L. Sun, D.L. Irving, R.O. Scattergood, and D.W. Brenner: Computational study of the impurity induced reduction of grain boundary energies in nano- and bi-crystalline Al-Pb alloys. Mater. Sci. Eng., A 527(7–8), 1769 (2010).

    Article  CAS  Google Scholar 

  54. H. Bakker: Enthalpies in Alloys: Miedema’s Semi-empirical Model (Trans Tech Publications, Enfield, New Hampshire, 1998).

    Book  Google Scholar 

  55. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen: Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, Netherlands, 1988).

    Google Scholar 

  56. A.R. Miedema: Surface segregation in alloys of transition-metals. Z. Metallkd. 69(7), 455 (1978).

    CAS  Google Scholar 

  57. O. Redlich and A.T. Kister: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40(2), 345 (1948).

    Article  Google Scholar 

  58. I.H. Moon, S.S. Ryu, S.W. Kim, D.M. Won, and W.S. Jang: Grain growth in the nanocrystalline W-Cu and Cu-Pb composite powders prepared by mechanical alloying. Z. Metallkd. 92(8), 986 (2001).

    CAS  Google Scholar 

  59. S.G. Mayr and D. Bedorf: Stabilization of Cu nanostructures by grain boundary doping with Bi: Experiment versus molecular dynamics simulation. Phys. Rev. B 76(2), 024111 (2007).

    Article  CAS  Google Scholar 

  60. M. Zhu, Z. Wu, M. Zeng, L. Ouyang, and Y. Gao: Bimodal growth of the nanophases in the dual-phase composites produced by mechanical alloying in immiscible Cu–Ag system. J. Mater. Sci. 43(9), 3259 (2008).

    Article  CAS  Google Scholar 

  61. Z.F. Wu, M.Q. Zeng, L.Z. Ouyang, X.P. Zhang, and M. Zhu: Ostwald ripening of Pb nanocrystalline phase in mechanically milled Al-Pb alloys and the influence of Cu additive. Scr. Mater. 53(5), 529 (2005).

    Article  CAS  Google Scholar 

  62. F. Liu: Precipitation of a metastable Fe(Ag) solid solution upon annealing of supersaturated Fe(Ag) thin film prepared by pulsed laser deposition. Appl. Phys. A 81(5), 1095 (2005).

    Article  CAS  Google Scholar 

  63. E. Pellicer, A. Varea, S. Pane, B.J. Nelson, E. Menendez, M. Estrader, S. Surinach, M.D. Baro, J. Nogues, and J. Sort: Nanocrystalline electroplated Cu-Ni: Metallic thin films with enhanced mechanical properties and tunable magnetic behavior. Adv. Funct. Mater. 20(6), 983 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported primarily by the U.S. Army Research Office under contract W911NF-09-1-0422, with partial additional support from the Solid State Solar Thermal Energy Conversion (S3TEC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under DE-SC0001299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Schuh.

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murdoch, H.A., Schuh, C.A. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. Journal of Materials Research 28, 2154–2163 (2013). https://doi.org/10.1557/jmr.2013.211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.211

Navigation