Skip to main content
Log in

Characterization of the intrinsic strength between epoxy and silica using a multiscale approach

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Organic–inorganic interfaces exist in many natural or synthetic materials, such as mineral–protein interfaces found in bone and epoxy–silica interfaces found in concrete construction. Here, we report a model to predict the intrinsic strength between organic and inorganic materials, based on a molecular dynamics simulation approach combined with the metadynamics method, used to reconstruct the free energy surface between attached and detached states of the bonded system and scaled up to incorporate it into a continuum model. We apply this technique to model an epoxy–silica system that primarily features nonbonded and nondirectional van der Waals and Coulombic chemical interactions. The intrinsic strength between epoxy and silica derived from the molecular level is used to predict the structural behavior of epoxy–silica interface at the macroscopic length scale by invoking a finite element approach using a cohesive zone model which shows a good agreement with existing experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE I

Similar content being viewed by others

References

  1. C. Au and O. Büyüköztürk: Peel and shear fracture characterization of debonding in FRP plated concrete affected by moisture. J. Compos. Constr. 10(1), 35–47 (2006).

    Article  CAS  Google Scholar 

  2. D. Lau and O. Büyüköztürk: Fracture characterization of concrete/epoxy interface affected by moisture. Mech. Mater. 42(12), 1031 (2010).

    Article  Google Scholar 

  3. B.M. Sharratt, L.C. Wang, and R.H. Dauskardt: Anomalous debonding behavior of a polymer/inorganic interface. Acta. Mater. 55, 3601 (2007).

    Article  CAS  Google Scholar 

  4. C. Tuakta and O. Buyukozturk: Deterioration of FRP/concrete bond system under variable moisture conditions quantified by fracture mechanics. Composites Part B 42, 145 (2011).

    Article  Google Scholar 

  5. O. Büyüköztürk, M.J. Buehler, D. Lau, and C. Tuakta: Structural solution using molecular dynamics: Fundamentals and a case study of epoxy-silica interface. Int. J. Solids Struct. 48(14–15), 2131 (2011).

    Article  Google Scholar 

  6. M.J. Buehler: Atomistic Modeling of Materials Failure (Springer, New York, 2008).

    Book  Google Scholar 

  7. M.A. Korzhinsky, S.I. Tkachenko, K.I. Shmulovich, and G.S. Steinberg: Native AI and Si formation. Nature 375, 544 (1995).

    Article  CAS  Google Scholar 

  8. A. Laio and M. Parrinello: Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A. 99(20), 12562 (2002).

    Article  CAS  Google Scholar 

  9. A. Laio and F.L. Gervasio: Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71(12), 126601 (2008).

    Article  Google Scholar 

  10. S. Keten and M.J. Buehler: Asymptotic strength limit of hydrogen-bond assemblies in protein at vanishing pulling rates. Phys. Rev. Lett. 100(19), 198301 (2008).

    Article  Google Scholar 

  11. A.K. Rappe and W.A.I. Goddard: Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95(8), 3358 (1991).

    Article  CAS  Google Scholar 

  12. J.R. Maple, U. Dinur, and A.T. Hagler: Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Prog. Natl. Acad. Sci. U.S.A. 85, 5350 (1988).

    Article  CAS  Google Scholar 

  13. P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, and A.T. Hagler: Structure and energetics of ligand binding to proteins: Escherichia colidihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins. Struct. Funct. Genet. 4, 47 (1988).

    Article  Google Scholar 

  14. F. Ritschla, M. Faitb, K. Fiedlera, J.E.H. JKohlerc, B. Kubiasb, and M. Meisela: An extension of the consistent valence force field (CVFF) with the aim to simulate the structures of vanadium phosphorus oxides and the adsorption of n-butane and of 1-butene on their crystal planes. ZAAC Zeitschrift für anorganische und allgemeine Chemie 628(6), 1385 (2002).

    Article  Google Scholar 

  15. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  16. M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R.A. Broglia, and M. Parrinello: PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180(10), 1961–1972 (2009).

    Article  CAS  Google Scholar 

  17. T. Ackbarow, X. Chen, S. Keten, and M.J. Buehler: Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains. Proc. Natl. Acad. Sci. U.S.A. 104(42), 16410–16415 (2007).

    Article  CAS  Google Scholar 

  18. M. Sotomayor and K. Schulten: Single-molecule experiments in vitro and in silico. Science 316(5828), 1144 (2007).

    Article  CAS  Google Scholar 

  19. J.F. Marko and E.D. Siggia: Stretching DNA. Macromolecules 28(26), 8759 (1995).

    Article  CAS  Google Scholar 

  20. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, and H.E. Gaub: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315), 1109 (1997).

    Article  CAS  Google Scholar 

  21. A.F. Oberhauser, P.E. Marszalek, H.P. Erickson, and J.M. Fernandez: The molecular elasticity of the extracellular matrix protein tenascin. Nature 393(181), 181 (1998).

    Article  CAS  Google Scholar 

  22. T.E. Fisher, A.F. Oberhauser, M. Carrion-Vazquez, P.E. Marszalek, and J.M. Fernandez: The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379 (1999).

    Article  CAS  Google Scholar 

  23. M. Rief, J.M. Fernandez, and H.E. Gaub: Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 84(21), 4764 (1998).

    Article  Google Scholar 

  24. C. Bustamante, S.B. Smith, J. Liphardt, and D. Smith: Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279 (2000).

    Article  CAS  Google Scholar 

  25. D.S. Dugdale: Yielding in steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960).

    Article  Google Scholar 

  26. G.I. Barenblatt: The mathematical theory of equilibrium cracks in brittle fracture. In Advances in Applied Mechanics, H.L. Dryden and T. Von Karman, eds, Academic Press, New York, NY, 1962; pp. 55–129.

    Google Scholar 

  27. M. Elices, G.V. Guinea, J. Gomez, and J. Planas: The cohesive zone model: Advantages, limitations and challenges. Eng. Fract. Mech. 69(2), 137–163 (2002).

    Article  Google Scholar 

  28. M. Frigione, M.A. Aiello, and C. Naddeo: Water effect on the bond strength of concrete/concrete adhesive joints. Constr. Build. Mater. 20, 957–970 (2006).

    Article  Google Scholar 

  29. V.M. Karbhari and M. Engineer: Effects of environmental exposure on the external strengthening of concrete with composites-short term bond durability. J. Reinf. Plast. Compos. 15, 1194–1216 (1996).

    Article  CAS  Google Scholar 

  30. Z. Ouyang and L. Guoqiang: Nonlinear interface shear fracture of end notched flexure specimens. Int. J. Solids Struct. 46, 2659–2668 (2009).

    Article  Google Scholar 

  31. P. Qiao and Y. Xu: Effects of freeze-thaw and dry-wet conditionings on the mode-I fracture of FRP-concrete interface bonds. In Engineering, Construction and Operations in Challenging Environments: Proceedings of Ninth Biennial Conference of the Aerospace Division, edited by R.B. Malla and A. Maji (ASCE Conf. Proc., League City/Houston, TX, 2004), pp. 601–608.

    Chapter  Google Scholar 

  32. I. Yarovsky and E. Evans: Computer simulation of structure and properties of crosslinked polymers application to epoxy resins. Polymer 43, 963 (2002).

    Article  CAS  Google Scholar 

  33. C.A. May: Epoxy Resins: Chemistry and Technology, 2nd ed. (Marcel Dekker Inc, New York, 1987).

    Google Scholar 

  34. T. Diehl: On using a penalty-based cohesive-zone finite element approach: Part II–Inelastic peeling of an epoxy-bonded aluminum strip. Int. J. Adhes. Adhes. 28(4–5), 256 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation through the Division of Civil and Mechanical Systems (CMS) Grant No. 0856325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, D., Büyüköztürk, O. & Buehler, M.J. Characterization of the intrinsic strength between epoxy and silica using a multiscale approach. Journal of Materials Research 27, 1787–1796 (2012). https://doi.org/10.1557/jmr.2012.96

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.96

Navigation