Skip to main content
Log in

An introduction to thin film processing using high-power impulse magnetron sputtering

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-power impulse magnetron sputtering (HiPIMS) is a promising sputtering-based ionized physical vapor deposition technique and is already making its way to industrial applications. The major difference between HiPIMS and conventional magnetron sputtering processes is the mode of operation. In HiPIMS the power is applied to the magnetron (target) in unipolar pulses at a low duty factor (<10%) and low frequency (<10 kHz) leading to peak target power densities of the order of several kilowatts per square centimeter while keeping the average target power density low enough to avoid magnetron overheating and target melting. These conditions result in the generation of a highly dense plasma discharge, where a large fraction of the sputtered material is ionized and thereby providing new and added means for the synthesis of tailor-made thin films. In this review, the features distinguishing HiPIMS from other deposition methods will be addressed in detail along with how they influence the deposition conditions, such as the plasma parameters and the sputtered material, as well as the resulting thin film properties, such as microstructure, phase formation, and chemical composition. General trends will be established in conjunction to industrially relevant material systems to present this emerging technology to the interested reader.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. M. Ohring: Materials Science of Thin Films (Academic Press, San Diego, 2002).

    Google Scholar 

  2. F.M. Penning, U.S. Patent No: 2,146,025 (1939) (German Patent filed 1935).

  3. J.A. Thornton and A.S. Penfold: Cylindrical magnetron sputtering in thin film processes. Thin Film Processes, edited by J.L. Vossen and W. Kern (Academic Press, New York, 1978).

    Google Scholar 

  4. V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, and I. Petrov: A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Tech. 122, 290 (1999).

    Article  CAS  Google Scholar 

  5. U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, and J.T. Gudmundsson: Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 513, 1 (2006).

    Article  CAS  Google Scholar 

  6. A. Anders: Discharge physics of high power impulse magnetron sputtering. Surf. Coat. Tech. 205, S1 (2011).

    Article  CAS  Google Scholar 

  7. J. Bohlmark, M. Lattemann, J.T. Gudmundsson, A.P. Ehiasarian, Y. Aranda Gonzalvo, N. Brenning, and U. Helmersson: The ion-energy distributions and plasma composition of a high power impulse magnetron sputtering discharge. Thin Solid Films 515, 1522 (2006).

    Article  CAS  Google Scholar 

  8. M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J.T. Gudmundsson, and U. Helmersson: On the film density using high power impulse magnetron sputtering. Surf. Coat. Tech. 15, 591 (2010).

    Article  CAS  Google Scholar 

  9. V. Sittinger, F. Ruske, W. Werner, C. Jacobs, B. Szyszka, and D. Christie: High power pulsed magnetron sputtering of transparent conducting oxides. Thin Solid Films 516, 5847 (2008).

    Article  CAS  Google Scholar 

  10. M. Lattemann, U. Helmersson, and J.E. Greene: Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias. Thin Solid Films 518, 5978 (2010).

    Article  CAS  Google Scholar 

  11. S. Konstantinidis, J.P. Dauchot, and M. Hecq: Titanium oxide thin films deposited by high-power impulse magnetron sputtering. Thin Solid Films 515, 1182 (2006).

    Article  CAS  Google Scholar 

  12. J. Alami, P. Eklund, J.M. Andersson, M. Lattemann, E. Wallin, J. Bohlmark, P. Persson, and U. Helmersson: Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering. Thin Solid Films 515, 3434 (2007).

    Article  CAS  Google Scholar 

  13. J. Paulitsch, P.H. Mayrhofer, C. Mitterer, W-D. Münz, and M. Schenkel: Mechanical and tribological properties of CrN coatings deposited by a simultaneous HIPIMS/UBM sputtering process, in Society of Vacuum Coaters 50th Annual Technical Conference Proceedings, April 28–May 3 (Louisville, KY, 2007), p. 150.

    Google Scholar 

  14. A.P. Ehiasarian, J.G. Wen, and I. Petrov: Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion. J. Appl. Phys. 101, 054301 (2007).

    Article  CAS  Google Scholar 

  15. J. Alami, P.O.Å. Persson, D. Music, J.T. Gudmundsson, J. Bohlmark, and U. Helmersson: Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces. J. Vac. Sci. Technol. A 23, 278 (2005).

    Article  CAS  Google Scholar 

  16. A. Aijaz, D. Lundin, P. Larsson, and U. Helmersson: Dual-magnetron open field sputtering system for sideways deposition of thin films. Surf. Coat. Tech. 204, 2165 (2010).

    Article  CAS  Google Scholar 

  17. E. Wallin, T.I. Selinder, M. Elfwing, and U. Helmersson: Synthesis of α-Al2O3 thin films using reactive high-power impulse magnetron sputtering. Europhys. Lett. 82, 36002 (2008).

    Article  CAS  Google Scholar 

  18. K. Sarakinos, J. Alami, and S. Konstantinidis: High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf. Coat. Tech. 204, 1661 (2010).

    Article  CAS  Google Scholar 

  19. C. Christou and Z.H. Barber: Ionization of sputtered material in a planar magnetron discharge. J. Vac. Sci. Technol. A 18, 2897 (2000).

    Article  CAS  Google Scholar 

  20. S.M. Rossnagel and J. Hopwood: Metal ion deposition from ionized magnetron sputtering discharge. J. Vac. Sci. Technol. B 12, 449 (1994).

    Article  CAS  Google Scholar 

  21. S. Konstantinidis, A. Ricard, M. Ganciu, J.P. Dauchot, C. Ranea, and M. Hecq: Measurement of ionic and neutral densities in amplified magnetron discharges by pulsed absorption spectroscopy. J. Appl. Phys. 95, 2900 (2004).

    Article  CAS  Google Scholar 

  22. C. Nouvellon, S. Konstantinidis, J.P. Dauchot, M. Wautelet, P.Y. Jouan, A. Ricard, and M. Hecq: Emission spectrometry diagnostic of sputtered titanium in magnetron amplified discharges. J. Appl. Phys. 92, 32 (2002).

    Article  CAS  Google Scholar 

  23. C.P. Johnson: The cathodic arc plasma deposition of thin films, in J.L. Vossen and W. Kern (eds.): Thin Film Processes II (Academic Press, New York, 1991).

    Google Scholar 

  24. W.D. Davis and H.C. Miller: Analysis of the electrode products emitted by dc arcs in a vacuum ambient. J. Appl. Phys. 40, 2212 (1969).

    Article  CAS  Google Scholar 

  25. Z. Wang and S.A. Cohen: Hollow cathode magnetron. J. Vac. Sci. Technol. A 17, 77 (1999).

    Article  CAS  Google Scholar 

  26. E. Klawuhn, G.C. D’Couto, K.A. Ashtiani, P. Rymer, M.A. Biberger, and K.B. Levy: Ionized physical-vapor deposition using a hollow-cathode magnetron source for advanced metallization. J. Vac. Sci. Technol. A 18, 1546 (2000).

    Article  CAS  Google Scholar 

  27. D. Söderström: Modelling and Applications of the Hollow Cathode Plasma. Doctoral Thesis, Uppsala University, Uppsala, (2008).

    Google Scholar 

  28. S. Konstantinidis, J.P. Dauchot, M. Ganciu, A. Ricard, and M. Hecq: Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges. J. Appl. Phys. 99, 013307 (2006).

    Article  CAS  Google Scholar 

  29. D. Lundin, N. Brenning, D. Jädernäs, P. Larsson, E. Wallin, M. Lattemann, M.A. Raadu, and U. Helmersson: Transition between the discharge regimes of high power impulse magnetron sputtering and conventional direct current magnetron sputtering. Plasma Sources Sci. Technol. 18, 045008 (2009).

    Article  CAS  Google Scholar 

  30. E. Wallin and U. Helmersson: Hysteresis-free reactive high power impulse magnetron sputtering. Thin Solid Films 516, 6398 (2008).

    Article  CAS  Google Scholar 

  31. J. Alami, K. Sarakinos, F. Uslu, and M. Wuttig: On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering. J. Phys. D 42, 015304 (2009).

    Article  CAS  Google Scholar 

  32. J.T. Gudmundsson, P. Sigurjonsson, P. Larsson, D. Lundin, and U. Helmersson: On the electron energy in the high power impulse magnetron sputtering discharge. J. Appl. Phys. 105, 123302 (2009).

    Article  CAS  Google Scholar 

  33. J. Bohlmark, J.T. Gudmundsson, J. Alami, M. Lattemann, and U. Helmersson: Spatial electron density distribution in a high-power pulsed magnetron discharge. IEEE Trans. Plasma Sci. 33, 346 (2005).

    Article  Google Scholar 

  34. J.T. Gudmundsson: The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool. Vacuum 84, 1360 (2010).

    Article  CAS  Google Scholar 

  35. J. Vlcek, P. Kudlacek, K. Burcalova, and J. Musil: Ion flux characteristics in high-power pulsed magnetron sputtering discharges. Europhys. Lett. 77, 45002 (2007).

    Article  CAS  Google Scholar 

  36. J. Bohlmark, J. Alami, C. Christou, A.P. Ehiasarian, and U. Helmersson: Ionization of sputtered metals in high power pulsed magnetron sputtering. J. Vac. Sci. Technol. A 23, 18 (2005).

    Article  CAS  Google Scholar 

  37. K. Macák, V. Kouznetsov, J. Schneider, U. Helmersson, and I. Petrov: Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge. J. Vac. Sci. Technol. A 18, 1533 (2000).

    Article  Google Scholar 

  38. B.M. DeKoven, P.R. Ward, R.E. Weiss, D.J. Christie, R.A. Scholl, W.D. Sproul, F. Tomasel, and A. Anders: Carbon thin film deposition using high power pulsed magnetron sputtering, in Society of Vacuum Coaters 46th Annual Technical Conference Proceedings, May 3–8 (San Francisco, CA, 2003), p. 158.

    Google Scholar 

  39. J.A. Hopwood: Plasma Physics. Thin Films: Ionized Physical Vapor Deposition, edited by J.A. Hopwood (Academic Press, San Diego, 2000).

    Google Scholar 

  40. S.M. Rossnagel and J. Hopwood: Magnetron sputter deposition with high levels of metal ionization. Appl. Phys. Lett. 63, 3285 (1993).

    Article  CAS  Google Scholar 

  41. J. Vlcek, P. Kudlacek, K. Burcalova, and J. Musil: High-power pulsed sputtering using a magnetron with enhanced plasma confinement. J. Vac. Sci. Technol. A 25, 42 (2007).

    Article  CAS  Google Scholar 

  42. K. Burcalova, A. Hecimovic, and A.P. Ehiasarian: Ion-energy distributions and efficiency of sputtering process in HIPIMS system. J. Phys. D 41, 115306 (2008).

    Article  CAS  Google Scholar 

  43. A. Anders, J. Andersson, and A. Ehiasarian: High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering. J. Appl. Phys. 102, 113303 (2007).

    Article  CAS  Google Scholar 

  44. J. Andersson, A.P. Ehiasarian, and A. Anders: Observation of Ti4+ ions in a high power impulse magnetron sputtering plasma. Appl. Phys. Lett. 93, 071504 (2008).

    Article  CAS  Google Scholar 

  45. J. Rosén, A. Anders, S. Mráz, and J.M. Schneider: Charge-state-resolved ion energy distributions of aluminum vacuum arcs in the absence and presence of a magnetic field. J. Appl. Phys. 97, 103306 (2005).

    Article  CAS  Google Scholar 

  46. A. Anders: Self-sputtering runaway in high power impulse magnetron sputtering: The role of secondary electrons and multiply charged metal ions. Appl. Phys. Lett. 92, 201501 (2008).

    Article  CAS  Google Scholar 

  47. J. Andersson and A. Anders: Gasless sputtering: Opportunities for ultraclean metallization, coatings in space, and propulsion. Appl. Phys. Lett. 92, 221503 (2008).

    Article  CAS  Google Scholar 

  48. L.I. Wei, M.A. Zhong-Quan, W. Ye, and W. De-Ming: Optimization of energy scope for titanium nitride films grown by ion beam-assisted deposition. Chin. Phys. Lett. 23, 178 (2006).

    Article  Google Scholar 

  49. D. Lundin, P. Larsson, E. Wallin, M. Lattemann, N. Brenning, and U. Helmersson: Cross-field ion transport during high power impulse magnetron sputtering. Plasma Sources Sci. Technol. 17, 035021 (2008).

    Article  CAS  Google Scholar 

  50. F. Eriksson, N. Ghafoor, F. Schäfers, E.M. Gullikson, and J. Birch: Interface engineering of short-period Ni/V multilayer x-ray mirrors. Thin Solid Films 500, 84 (2006).

    Article  CAS  Google Scholar 

  51. A. Hecimovic and A.P. Ehiasarian: Time evolution of ion energies in HIPIMS of chromium plasma discharge. J. Phys. D 42, 135209 (2009).

    Article  CAS  Google Scholar 

  52. A. Hecimovic and A.P. Ehiasarian: Temporal evolution of the ion fluxes for various elements in HIPIMS plasma discharge. IEEE Trans. Plasma Sci. 39, 1154 (2011).

    Article  CAS  Google Scholar 

  53. W.P. Leroy, S. Konstantinidis, S. Mahieu, R. Snyders, and D. Depla: Angular-resolved energy flux measurements of a dc- and HIPIMS-powered rotating cylindrical magnetron in reactive and non-reactive atmosphere. J. Phys. D 44, 115201 (2011).

    Article  CAS  Google Scholar 

  54. D. Lundin, M. Stahl, H. Kersten, and U. Helmersson: Energy flux measurements in high power impulse magnetron sputtering. J. Phys. D 42, 185202 (2009).

    Article  CAS  Google Scholar 

  55. G. West, P. Kelly, P. Barker, A. Mishra, and J. Bradley: Measurements of deposition rate and substrate heating in a HiPIMS discharge. Plasma Processes Polym. 6, S543 (2009).

    Article  CAS  Google Scholar 

  56. D.W. Hoffman: A sputtering wind. J. Vac. Sci. Technol. A 3, 561 (1985).

    Article  CAS  Google Scholar 

  57. S.M. Rossnagel: Gas density reduction effects in magnetrons. J. Vac. Sci. Technol. A 6, 19 (1988).

    Article  CAS  Google Scholar 

  58. A. Palmero, H. Rudolph, and F.H.P.M. Habraken: Gas heating in plasma-assisted sputter deposition. Appl. Phys. Lett. 87, 071501 (2005).

    Article  CAS  Google Scholar 

  59. A. Palmero, H. Rudolph, and F.H.P.M. Habraken: Study of the gas rarefaction phenomenon in a magnetron sputtering system. Thin Solid Films 515, 631 (2006).

    Article  CAS  Google Scholar 

  60. I. Kolev and A. Bogaerts: Calculation of gas heating in a dc sputter magnetron. J. Appl. Phys. 104, 093301 (2008).

    Article  CAS  Google Scholar 

  61. S. Kadlec: Simulation of neutral particle flow during high power magnetron impulse. Plasma Processes Polym. 4, S419 (2007).

    Article  Google Scholar 

  62. U. Helmersson, M. Lattemann, J. Alami, J. Bohlmark, A.P. Ehiasarian, and J.T. Gudmundsson: High power impulse magnetron sputtering discharges and thin film growth: A brief review, in Society of Vacuum Coaters 48th Annual Technical Conference Proceedings, April 23–28 (Denver, CO, 2005), p. 458.

    Google Scholar 

  63. D.J. Christie: Target material pathways model for high power pulsed magnetron sputtering. J. Vac. Sci. Technol. A 23, 330 (2005).

    Article  CAS  Google Scholar 

  64. P. Poolcharuansin and J.W. Bradley: Short- and long-term plasma phenomena in a HiPIMS discharge. Plasma Sources Sci. Technol. 19, 025010 (2010).

    Article  CAS  Google Scholar 

  65. S. Konstantinidis, J.P. Dauchot, M. Ganciu, and M. Hecq: Transport of ionized metal atoms in high-power pulsed magnetron discharges assisted by inductively coupled plasma. Appl. Phys. Lett. 88, 021501 (2006).

    Article  CAS  Google Scholar 

  66. S.P. Bugaev, N.N. Koval, N.S. Sochugov, and A.N. Zakharov: Investigation of a high-current pulsed magnetron discharge initiated in the low-pressure diffuse arc plasma, in Proceedings of the XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, July 21–26 (Berkeley, CA, 1996), p. 1074.

    Chapter  Google Scholar 

  67. J. Bohlmark, M. Östbye, M. Lattemann, H. Ljungcrantz, T. Rosell, and U. Helmersson: Guiding the deposition flux in an ionized magnetron discharge. Thin Solid Films 515, 1928 (2006).

    Article  CAS  Google Scholar 

  68. A. Mishra, P.J. Kelly, and J.W. Bradley: The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate. Plasma Sources Sci. Technol. 19, 045014 (2010).

    Article  Google Scholar 

  69. J. Emmerlich, S. Mráz, R. Snyders, K. Jiang, and J.M. Schneider: The physical reason for the apparently low deposition rate during high power pulsed magnetron sputtering. Vacuum 82, 867 (2008).

    Article  CAS  Google Scholar 

  70. N. Brenning, R.L. Merlino, D. Lundin, M.A. Raadu, and U. Helmersson: Faster-than-Bohm Cross-B Electron Transport in Strongly Pulsed Plasmas. Phys. Rev. Lett. 103, 225003 (2009).

    Article  CAS  Google Scholar 

  71. D. Lundin, U. Helmersson, S. Kirkpatrick, S. Rohde, and N. Brenning: Anomalous electron transport in high power impulse magnetron sputtering. Plasma Sources Sci. Technol. 17, 025007 (2008).

    Article  CAS  Google Scholar 

  72. N. Brenning, C. Huo, D. Lundin, M.A. Raadu, C. Vitelaru, G.D. Stancu, T. Minea, and U. Helmersson: Understanding deposition rate loss in high power impulse magnetron sputtering. Plasma Sources Sci. Technol. (2011, in press).

    Google Scholar 

  73. M. Aiempanakit, T. Kubart, P. Larssron, K. Sarakinos, J. Jensen, and U. Helmersson: Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides. Thin Solid Films 519, 7779 (2011).

    Article  CAS  Google Scholar 

  74. J. Lazar, J. Vlcek, and J. Rezek: Ion flux characteristics and efficiency of the deposition processes in high power impulse magnetron sputtering of zirconium. J. Appl. Phys. 108, 063307 (2010).

    Article  CAS  Google Scholar 

  75. D. Horwat and A. Anders: Compression and strong rarefaction in high power impulse magnetron sputtering discharges. J. Appl. Phys. 108, 123306 (2010).

    Article  CAS  Google Scholar 

  76. J. Lin, J.J. Moore, W.D. Sproul, B. Mishra, J.A. Rees, Z. Wu, R. Chistyakov, and B. Abraham: Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering. Surf. Coat. Tech. 203, 3676 (2009).

    Article  CAS  Google Scholar 

  77. L. Meng, A.N. Cloud, S. Jung, and D.N. Ruzic: Study of plasma dynamics in a modulated pulsed power magnetron discharge using a time-resolved Langmuir probe. J. Vac. Sci. Technol. A 29, 011024 (2011).

    Article  CAS  Google Scholar 

  78. M. Hála, J. Capek, O. Zabeida, J.E. Klemberg-Sapieha, and L. Martinu: Pulse management in high power pulsed magnetron sputtering process: I. Effect on the characteristics of Ar discharge and Nb coatings. J. Phys. D (2011, in press).

    Google Scholar 

  79. A.E. Ross, R. Sangines, B. Treverrow, M.M.M. Bilek, and D.R. McKenzie: Optimizing efficiency of Ti ionized deposition in HIPIMS. Plasma Sources Sci. Technol. 20, 035021 (2011).

    Article  CAS  Google Scholar 

  80. S. Berg and T. Nyberg: Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 476, 215 (2005).

    Article  CAS  Google Scholar 

  81. D. Depla and R. De Gryse: Target poisoning during reactive magnetron sputtering: Part I: The influence of ion implantation. Surf. Coat. Tech. 183, 184 (2004).

    Article  CAS  Google Scholar 

  82. D. Severin, O. Kappertz, T. Kubart, T. Nyberg, S. Berg, A. Pflug, M. Siemers, and M. Wuttig: Process stabilization and increase of the deposition rate in reactive sputtering of metal oxides and oxynitrides. Appl. Phys. Lett. 88, 161504 (2006).

    Article  CAS  Google Scholar 

  83. W.D. Sproul, M.E. Graham, M.S. Wong, S. Lopez, D. Li, and R.A. Scholl: Reactive direct current magnetron sputtering of aluminum oxide coatings. J. Vac. Sci. Technol. A 13, 1188 (1995).

    Article  CAS  Google Scholar 

  84. K. Sarakinos, J. Alami, C. Klever, and M. Wuttig: Process stabilization and enhancement of deposition rate during reactive high power pulsed magnetron sputtering of zirconium oxide. Surf. Coat. Tech. 202, 5033 (2008).

    Article  CAS  Google Scholar 

  85. D. Depla and R. De Gryse: Cross section for removing chemisorbed oxygen from an aluminum target by sputtering. J. Vac. Sci. Technol. A 20, 521 (2002).

    Article  CAS  Google Scholar 

  86. B. Clarenbach, B. Lorenz, M. Krämer, and N. Sadeghi: Time-dependent gas density and temperature measurements in pulsed helicon discharges in argon. Plasma Sources Sci. Technol. 12, 345 (2003).

    Article  CAS  Google Scholar 

  87. K. Sarakinos, J. Alami, and M. Wuttig: Process characteristics and film properties upon growth of TiOx films by high power pulsed magnetron sputtering. J Phys. D 40, 2108 (2008).

    Article  CAS  Google Scholar 

  88. T. Kubart, M. Aiempanakit, J. Andersson, T. Nyberg, S. Berg, and U. Helmersson: Studies of hysteresis effect in reactive HiPIMS deposition of oxides. Surf. Coat. Tech. 205, S303 (2011).

    Article  CAS  Google Scholar 

  89. D.M. Mattox: Handbook of Physical Vapor Deposition (PVD) Processing (Noyes Publications, Westwood, 1998).

    Google Scholar 

  90. O. Auciello and R. Kelly: Ion Bombardment Modification of Surfaces: Fundamentals and Applications (Elsevier, Amsterdam, 1984).

    Google Scholar 

  91. I. Petrov, P.B. Barna, L. Hultman, and J.E. Greene: Microstructural evolution during film growth. J. Vac. Sci. Technol. A 21, S117 (2003).

    Article  CAS  Google Scholar 

  92. J. Dalla Torre, G.H. Gilmer, D.L. Windt, R. Kalyanaraman, F.H. Baumann, P.L. O’Sullivan, J. Sapjeta, T. Díaz de la Rubia, and M. Djafari Rouhani: Microstructure of thin tantalum films sputtered onto inclined substrates: Experiments and atomistic simulations. J. Appl. Phys. 94, 263 (2003).

    Article  CAS  Google Scholar 

  93. W. Ensiger: Low energy ion assist during deposition—an effective tool for controlling thin film microstructure. Nucl. Instrum. Methods Phys. Res. B 127–, 796 (1997).

    Article  Google Scholar 

  94. C.R. Tellier and A.J. Tosser: Size Effects in Thin Films (Elsevier, Amsterdam, 1982).

    Google Scholar 

  95. R.C. Munoz, R. Finger, C. Arenas, G. Kremer, and L. Moraga: Surface-induced resistivity of thin metallic films bounded by a rough fractal surface. Phys. Rev. B 66, 205401 (2002).

    Article  CAS  Google Scholar 

  96. H. Weis, T. Müggenburg, P. Grosse, L. Herlitze, I. Friedrich, and M. Wuttig: Advanced characterization tools for thin films in low-E systems. Thin Solid Films. 351, 184 (1999).

    Article  CAS  Google Scholar 

  97. P. Siemroth and T. Schülke: Copper metallization in microelectronics using filtered vacuum arc deposition—principles and technological development. Surf. Coat. Tech. 133–, 106 (2000).

    Article  Google Scholar 

  98. J. Alami, S. Bolz, and K. Sarakinos: High power pulsed magnetron sputtering: Fundamentals and applications. J. Alloy. Comp. 483, 530 (2009).

    Article  CAS  Google Scholar 

  99. T. Schuelke, T. Witke, H.J. Scheibe, P. Siemroth, B. Schultrich, O. Zimmer, and J. Vetter: Comparison of DC and AC arc thin film deposition techniques. Surf. Coat. Tech. 120–, 226 (1999).

    Article  Google Scholar 

  100. R. Berisch: Sputtering by Particle Bombardment I (Springer, Berlin, 1982).

    Google Scholar 

  101. R. Chistyakov, B. Abraham, W.D. Sproul, J. Moore, and J. Lin: Modulated pulse power technology and deposition for protective and tribological coatings, in Society of Vacuum Coaters 50th Annual Technical Conference Proceedings, April 28–May 3 (Louisville, KY, 2007), p. 139.

    Google Scholar 

  102. T. Michely and J. Krug: Islands Mounts and Atoms (Springer, Berlin, 2004).

    Book  Google Scholar 

  103. I. Petrov, F. Adibi, J.E. Greene, L. Hultman, and J.E. Sundgren: Average energy deposited per atom: A universal parameter for describing ion-assisted film growth? Appl. Phys. Lett. 63, 36 (1993).

    Article  CAS  Google Scholar 

  104. G.C.A.M. Janssen and J.D. Kamminga: Stress in hard metal films. Appl. Phys. Lett. 85, 3086 (2004).

    Article  CAS  Google Scholar 

  105. Y. Pauleau: Generation and evolution of residual stresses in physical vapour-deposited thin films. Vacuum 61, 175 (2001).

    Article  CAS  Google Scholar 

  106. H. Windischmann: Intrinsic stress in sputter-deposited thin-films. Crit. Rev. Solid State Mater. Sci. 17, 547 (1992).

    Article  Google Scholar 

  107. C.A. Davis: A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30 (1993).

    Article  CAS  Google Scholar 

  108. L.A. Clevenger, A. Mutscheller, J.M.E. Harper, C. Cabral, and K. Barmak: The relationship between deposition conditions, the beta to alpha phase transformation, and stress relaxation in tantalum thin films. J. Appl. Phys. 72, 4918 (1992).

    Article  CAS  Google Scholar 

  109. D.W. Face and D.E. Prober: Nucleation of body-centered-cubic tantalum films with a thin niobium underlayer. J. Vac. Sci. Technol. A 5, 3408 (1987).

    Article  CAS  Google Scholar 

  110. J. Alami, P. Eklund, J. Emmerlich, O. Wilhelmsson, U. Jansson, H. Högberg, L. Hultman, and U. Helmersson: High-power impulse magnetron sputtering of Ti–Si–C thin films from a Ti3SiC2 compound target. Thin Solid Films 515, 1731 (2006).

    Article  CAS  Google Scholar 

  111. M.W. Barsoum: TheMn+1AXn Phases: A new class of solids, thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).

    Article  CAS  Google Scholar 

  112. P. Eklund, M. Beckers, U. Jansson, H. Högberg, and L. Hultman: The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Films 518, 1851 (2010).

    Article  CAS  Google Scholar 

  113. J. Alami, K. Sarakinos, F. Uslu, C. Klever, J. Dukwen, and M. Wuttig: On the phase formation of titanium oxide films grown by reactive high power pulsed magnetron sputtering. J. Phys. D 42, 115204 (2009).

    Article  CAS  Google Scholar 

  114. V. Stranak, M. Quaas, H. Wulff, Z. Hubicka, S. Wrehde, M. Tichy, and R. Hippler: Formation of TiOx films produced by high-power pulsed magnetron sputtering. J. Phys. D 41, 055202 (2008).

    Article  CAS  Google Scholar 

  115. M. Aiempanakit, U. Helmersson, A. Aijaz, P. Larsson, R. Magnusson, J. Jensen, and T. Kubart: Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide. Surf. Coat. Tech. 205, 4828 (2011).

    Article  CAS  Google Scholar 

  116. R. Bandorf, M. Vergöhl, P. Giesel, T. Wallendorf, and G. Mark: Investigation of HPPMS titania thin films prepared by unipolar, DC-superimposed and bipolar sputtering, in Society of Vacuum Coaters 50th Annual Technical Conference Proceedings, April 28–May 3 (Louisville, KY, 2007), p. 160.

    Google Scholar 

  117. M.D. Wiggins, M.C. Nelson, and C.R. Aita: Phase development in sputter deposited titanium dioxide. J. Vac. Sci. Technol. A 14, 772 (1996).

    Article  CAS  Google Scholar 

  118. W. Zhou, X.X. Zhong, X.C. Wu, L.Q. Yuan, Q.W. Shu, W. Li, and Y.X. Xia: Low-temperature deposition of nanocrystalline TiO2 films: Enhancement of nanocrystal formation by energetic particle bombardment. J. Phys D 40, 219 (2007).

    Article  CAS  Google Scholar 

  119. P.B. Barna and M. Adamik: Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 317, 27 (1998).

    Article  CAS  Google Scholar 

  120. J.S. Koehler: Attempt to design a strong solid. Phys. Rev. B 2, 547 (1970).

    Article  Google Scholar 

  121. P.M. van Attekum, P.H. Woerlee, G.C. Verkade, and A.A. Hoeben: Influence of grain boundaries and surface Debye temperature on the electrical resistance of thin gold films. Phys. Rev. B 29, 645 (1984).

    Article  Google Scholar 

  122. A. Anders: A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 518, 4087 (2010).

    Article  CAS  Google Scholar 

  123. G. Greczynski, J. Jensen, J. Böhlmark, and L. Hultman: Microstructure control of CrNx films during high power impulse magnetron sputtering. Surf. Coat. Tech. 205, 118 (2010).

    Article  CAS  Google Scholar 

  124. A.P. Ehiasarian, P.E. Hovsepian, L. Hultman, and U. Helmersson: Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique. Thin Solid Films 457, 270 (2004).

    Article  CAS  Google Scholar 

  125. A.P. Ehiasarian, W-D. Münz, L. Hultman, U. Helmersson, and I. Petrov: High power pulsed magnetron sputtered CrNx films. Surf. Coat. Tech. 163–, 267 (2003).

    Article  Google Scholar 

  126. J. Vetter, T. Michler, and H. Steuernagel: Hard coatings on thermochemically pretreated soft steels: Application potential for ball valves. Surf. Coat. Tech. 111, 210 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Ante Hecimovic for valuable input. One of the authors (K. Sarakinos) acknowledges the Swedish Research Council (VR) for the financial support through the postdoctoral project 623-2009-7348.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lundin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundin, D., Sarakinos, K. An introduction to thin film processing using high-power impulse magnetron sputtering. Journal of Materials Research 27, 780–792 (2012). https://doi.org/10.1557/jmr.2012.8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.8

Navigation