Skip to main content
Log in

Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The hardening effect caused by the relaxation of nonequilibrium grain boundary structure has been explored in nanocrystalline Ni–W alloys. First, the kinetics of relaxation hardening are studied, showing that higher annealing temperatures result in faster, more pronounced strengthening. Based on the temperature dependence of relaxation strengthening kinetics, triple junction diffusion is suggested as a plausible kinetic rate limiter for the removal of excess grain boundary defects in these materials. Second, the magnitude of relaxation strengthening is explored over a wide range of grain sizes spanning the Hall–Petch breakdown, with an apparent maximum hardening effect found at a grain size below 10 nm. The apparent activation volume for plastic deformation is unaffected by annealing for grain sizes down to ∼10 nm, but increases with annealing for the finest grain sizes, suggesting a change in the dominant deformation mechanism for these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Table II
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.J. Asaro, P. Krysl, and B. Kad: Deformation mechanism transitions in nanoscale fcc metals. Philos. Mag. Lett. 83, 733 (2003).

    Article  CAS  Google Scholar 

  2. Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, and B. Schmitt: Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science 304, 273 (2004).

    Article  CAS  Google Scholar 

  3. S. Cheng, J.A. Spencer, and W.W. Milligan: Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater. 51, 4505 (2003).

    Article  CAS  Google Scholar 

  4. D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).

    Article  CAS  Google Scholar 

  5. M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).

    Article  CAS  Google Scholar 

  6. K. Zhang, J.R. Weertman, and J.A. Eastman: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004).

    Article  CAS  Google Scholar 

  7. T.J. Rupert, D.S. Gianola, Y. Gan, and K.J. Hemker: Experimental observations of stress-driven grain boundary migration. Science 326, 1686 (2009).

    Article  CAS  Google Scholar 

  8. M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis: Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct. Mater. 5, 689 (1995).

    Article  CAS  Google Scholar 

  9. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 (2003).

    Article  CAS  Google Scholar 

  10. Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).

    Article  CAS  Google Scholar 

  11. J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).

    Article  Google Scholar 

  12. H. Van Swygenhoven and P.A. Derlet: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).

    Article  CAS  Google Scholar 

  13. D. Jang and M. Atzmon: Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe. J. Appl. Phys. 99, 083504 (2006).

    Article  CAS  Google Scholar 

  14. S. Ranganathan, R. Divakar, and V.S. Raghunathan: Interface structures in nanocrystalline materials. Scr. Mater. 44, 1169 (2001).

    Article  CAS  Google Scholar 

  15. X.L. Wu and Y.T. Zhu: Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries. Appl. Phys. Lett. 89, 031922 (2006).

    Article  CAS  Google Scholar 

  16. J. Loffler and J. Weissmuller: Grain-boundary atomic structure in nanocrystalline palladium from x-ray atomic distribution-functions. Phys. Rev. B 52, 7076 (1995).

    Article  CAS  Google Scholar 

  17. J. Eckert, J.C. Holzer, C.E. Krill, and W.L. Johnson: Structural and thermodynamic properties of nanocrystalline FCC metals prepared by mechanical attrition. J. Mater. Res. 7, 1751 (1992).

    Article  CAS  Google Scholar 

  18. G. Hibbard, U. Erb, K.T. Aust, U. Klement, and G. Palumbo: Thermal stability of nanostructured electrodeposits. Materials Science Forum 386–, 387 (2002).

    Article  Google Scholar 

  19. A. Tschope, R. Birringer, and H. Gleiter: Calorimetric measurements of the thermal relaxation in nanocrystalline platinum. J. Appl. Phys. 71, 5391 (1992).

    Article  Google Scholar 

  20. A.J. Detor and C.A. Schuh: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007).

    Article  CAS  Google Scholar 

  21. L. Chang, P.W. Kao, and C.H. Chen: Strengthening mechanisms in electrodeposited Ni-P alloys with nanocrystalline grains. Scr. Mater. 56, 713 (2007).

    Article  CAS  Google Scholar 

  22. T. Volpp, E. Goring, W.M. Kuschke, and E. Arzt: Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders. Nanostruct. Mater. 8, 855 (1997).

    Article  CAS  Google Scholar 

  23. J.R. Weertman: Hall-Petch strengthening in nanocrystalline metals. Mater. Sci. Eng. A 166, 161 (1993).

    Article  Google Scholar 

  24. G.E. Fougere, J.R. Weertman, R.W. Siegel, and S. Kim: Grain-size dependent hardening and softening of nanocrystalline Cu and Pd. Scr. Metall. Mater. 26, 1879 (1992).

    Article  CAS  Google Scholar 

  25. Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, and A. Hamza: Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scr. Mater. 51, 1023 (2004).

    Article  CAS  Google Scholar 

  26. A. Hasnaoui, H. Van Swygenhoven, and P.M. Derlet: On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation. Acta Mater. 50, 3927 (2002).

    Article  CAS  Google Scholar 

  27. N.Q. Vo, R.S. Averback, P. Bellon, and A. Caro: Limits of hardness at the nanoscale: Molecular dynamics simulations. Phys. Rev. B 78, 241402 (2008).

    Article  CAS  Google Scholar 

  28. N.Q. Vo, R.S. Averback, P. Bellon, and A. Caro: Yield strength in nanocrystalline Cu during high strain rate deformation. Scr. Mater. 61, 76 (2009).

    Article  CAS  Google Scholar 

  29. A.J. Detor and C.A. Schuh: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007).

    Article  CAS  Google Scholar 

  30. A.J. Detor, M.K. Miller, and C.A. Schuh: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 (2006).

    Article  CAS  Google Scholar 

  31. A.J. Detor, M.K. Miller, and C.A. Schuh: Measuring grain-boundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography. Philos. Mag. Lett. 87, 581 (2007).

    Article  CAS  Google Scholar 

  32. T.J. Rupert, J.C. Trenkle, and C.A. Schuh: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).

    Article  CAS  Google Scholar 

  33. Z. Zhang, F. Zhou, and E.J. Lavernia: On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metall. Mater. Trans. A 34, 1349 (2003).

    Article  Google Scholar 

  34. B.D. Cullity: Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1959), p. 262.

    Google Scholar 

  35. J.R. Trelewicz and C.A. Schuh: The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 55, 5948 (2007).

    Article  CAS  Google Scholar 

  36. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  37. B.N. Lucas and W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  38. A.C. Lund and C.A. Schuh: Strength asymmetry in nanocrystalline metals under multiaxial loading. Acta Mater. 53, 3193 (2005).

    Article  CAS  Google Scholar 

  39. J.R. Trelewicz and C.A. Schuh: The Hall-Petch breakdown at high strain rates: Optimizing nanocrystalline grain size for impact applications. Appl. Phys. Lett. 93, 171916 (2008).

    Article  CAS  Google Scholar 

  40. A.A. Nazarov: Kinetics of grain boundary recovery in deformed polycrystals. Interface Sci. 8, 315 (2000).

    Article  CAS  Google Scholar 

  41. D.V. Bachurin and A.A. Nazarov: Relaxation of nonequilibrium grain-boundary structure in nanocrystals. Phys. Met. Metall. 97, 133 (2004).

    Google Scholar 

  42. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, 1st ed. (Pergamon Press, New York, 1982).

    Google Scholar 

  43. J. Horvath, R. Birringer, and H. Gleiter: Diffusion in nanocrystalline material. Solid State Commun. 62, 319 (1987).

    CAS  Google Scholar 

  44. Y.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev, and R.Z. Valiev: Grain-boundary diffusion characteristics of nanostructured nickel. Scr. Mater. 44, 873 (2001).

    Article  CAS  Google Scholar 

  45. S. Schumacher, R. Birringer, R. Strauss, and H. Gleiter: Diffusion of silver in nanocrystalline copper between 303-K and 373-K. Acta Metall. 37, 2485 (1989).

    Article  CAS  Google Scholar 

  46. J.M. Blakely and H. Mykura: Surface self diffusion measurements on nickel by the mass transfer method. Acta Metall. 9, 23 (1961).

    Article  CAS  Google Scholar 

  47. Y. Chen and C.A. Schuh: Geometric considerations for diffusion in polycrystalline solids. J. Appl. Phys. 101, 063524 (2007).

    Article  CAS  Google Scholar 

  48. Y. Chen and C.A. Schuh: Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials. Scr. Mater. 57, 253 (2007).

    Article  CAS  Google Scholar 

  49. A. Tschope and R. Birringer: Thermodynamics of nanocrystalline platinum. Acta Metall. Mater. 41, 2791 (1993).

    Article  Google Scholar 

  50. U.F. Kocks, A.S. Argon, and M.F. Ashby: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1 (1975).

    Article  Google Scholar 

  51. G. Taylor: Thermally-activated deformation of bcc metals and alloys. Prog. Mater. Sci. 36, 29 (1992).

    Article  CAS  Google Scholar 

  52. A.C. Lund, T.G. Nieh, and C.A. Schuh: Tension/compression strength asymmetry in a simulated nanocrystalline metal. Phys. Rev. B 69, 012101 (2004).

    Article  CAS  Google Scholar 

  53. W.H. Jiang and M. Atzmon: Room-temperature flow in a metallic glass—Strain-rate dependence of shear-band behavior. J. Alloy. Comp. 509, 7395 (2011).

    Article  CAS  Google Scholar 

  54. Y.F. Shi and M.L. Falk: Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55, 4317 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Army Research Office through Grant W911NF-09-1-0422 and through the Institute for Soldier Nanotechnologies at Massachusetts Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Rupert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupert, T.J., Trelewicz, J.R. & Schuh, C.A. Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys. Journal of Materials Research 27, 1285–1294 (2012). https://doi.org/10.1557/jmr.2012.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.55

Navigation