Skip to main content

Advertisement

Log in

Three-dimensional arrays of graphenated carbon nanotubes

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene and carbon nanotubes (CNTs) are fascinating materials, both scientifically and technologically, due to their exceptional properties and potential use in applications ranging from high-frequency electronics to energy storage devices. This manuscript introduces a hybrid structure consisting of graphitic foliates grown along the length of aligned multiwalled CNTs. The foliate density and layer thickness vary as a function of deposition conditions, and a model is proposed for their nucleation and growth. The hybrid structures were studied using electron microscopy and Raman spectroscopy. The foliates consist of edges that approach the dimensions of graphene and provide enhanced charge storage capacity. Electrochemical impedance spectroscopy indicated that the weight-specific capacitance for the graphenated CNTs was 5.4× that of similar CNTs without the graphitic foliates. Pulsed charge injection measurements demonstrated a 7.3× increase in capacitance per unit area. These data suggest that this unique structure integrates the high surface charge density of the graphene edges with the high longitudinal conductivity of the CNTs and may have significant impact in charge storage and related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. H.T. Hall: Ultra-high-pressure, high-temperature apparatus: The “belt”. Rev. Sci. Instrum. 31(2), 125 (1960).

    Article  CAS  Google Scholar 

  2. M. Werner and R. Locher: Growth and application of undoped and doped diamond films. Rep. Prog. Phys. 61(12), 1665 (1998).

    Article  CAS  Google Scholar 

  3. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley: C60: Buckminsterfullerene. Nature 318, 162 (1985).

    Article  CAS  Google Scholar 

  4. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  5. http://nobelprize.org/nobel_prizes/physics/laureates/2010/, 2010.

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  7. Y.H. Wu, T. Yu, and Z.X. Shen: Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 108(7), 071301 (2010).

    Article  CAS  Google Scholar 

  8. M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, and H.L. Poh: Graphene for electrochemical sensing and biosensing. TrAC, Trends Anal. Chem. 29(9), 954 (2010).

    Article  CAS  Google Scholar 

  9. D. Wei and Y. Liu: Controllable synthesis of graphene and its applications. Adv. Mater. 22(30), 3225 (2010).

    Article  CAS  Google Scholar 

  10. S. Trasobares, C.P. Ewels, J. Birrell, O. Stephan, B.Q. Wei, J.A. Carlisle, D. Miller, P. Keblinski, and P.M. Ajayan: Carbon nanotubes with graphitic wings. Adv. Mater. 16(7), 610–613 (2004).

    Article  CAS  Google Scholar 

  11. K. Yu, G. Lu, Z. Bo, S. Mao, and J. Chen: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2(13), 1556–1562 (2011).

    Article  CAS  Google Scholar 

  12. B.R. Stoner, A.S. Raut, B. Brown, C.B. Parker, and J.T. Glass: Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance. Appl. Phys. Lett. 99(18), 183104 (2011).

    Article  CAS  Google Scholar 

  13. J-P. Randin and E. Yeager: Differential capacitance study of stress-annealed pyrolytic graphite electrodes. J. Electrochem. Soc. 118(5), 711 (1971).

    Article  CAS  Google Scholar 

  14. A.S. Raut, C.B. Parker, and J.T. Glass: A method to obtain a Ragone plot for evaluation of carbon nanotube supercapacitor electrodes. J. Mater. Res. 25(8), 1500 (2010).

    Article  CAS  Google Scholar 

  15. S.F. Cogan: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275 (2008).

    Article  CAS  Google Scholar 

  16. S. Natarajan, K.H. Gilchrist, J.R. Piascik, C.B. Parker, J.T. Glass, and B.R. Stoner: Simulation and testing of a lateral, microfabricated electron-impact ion source. Appl. Phys. Lett. 94(4), 044109 (2009).

    Article  CAS  Google Scholar 

  17. R. Kurt, A. Karimi, and V. Hoffmann: Growth of decorated carbon nano-tubes. Chem. Phys. Lett. 335, 545 (2001).

    Article  CAS  Google Scholar 

  18. O. Lourie and H.D. Wagner: Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites. Compos. Sci. Technol. 59(6), 975 (1999).

    Article  Google Scholar 

  19. R. Kurt and A. Karimi: Influence of nitrogen on the growth mechanism of decorated C:N nanotubes. ChemPhysChem 2(6), 388 (2001).

    Article  CAS  Google Scholar 

  20. R. Kurt, C. Klinke, J.M. Bonard, K. Kern, and A. Karimi: Tailoring the diameter of decorated C-N nanotubes by temperature variations using HF-CVD. Carbon 39, 2163 2001.

    Article  CAS  Google Scholar 

  21. D. Mata, M. Ferro, A.J.S. Fernandes, M. Amaral, F.J. Oliveira, P.M.F.J. Costa, and R.F. Silva: Wet-etched Ni foils as active catalysts towards carbon nanofiber growth. Carbon 48(10), 2839 (2010).

    Article  CAS  Google Scholar 

  22. H. Cui, O. Zhou, and B.R. Stoner: Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 2000. 88(10): p. 6072–6074.

    Article  CAS  Google Scholar 

  23. M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C.H. Kiang, and M.S. Dresselhaus: Stacking nature of graphene layers in carbon nanotubes and nanofibres. J. Phys. Chem. Solids 58(11), 1707 (1997).

    Article  CAS  Google Scholar 

  24. M. Zhu, J. Wang, B.C. Holloway, R.A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D.M. Manos: A mechanism for carbon nanosheet formation. Carbon, 2007. 45(11), pp. 2229–2234.

    Article  CAS  Google Scholar 

  25. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, New York, 1992).

    Book  Google Scholar 

  26. D.K. Singh, P.K. Iyer, and P.K. Giri: Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by x-ray diffraction and Raman scattering studies. Diamond Relat. Mater. 19, 1281 (2010).

    Article  CAS  Google Scholar 

  27. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18) 187401 (2006).

    Article  CAS  Google Scholar 

  28. C. Faugeras, A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W.A. de Heer: Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study. Appl. Phys. Lett. 92(1), 011914 (2008).

    Article  CAS  Google Scholar 

  29. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10(3), 751 (2010).

    Article  CAS  Google Scholar 

  30. X-F. Li, B-L. Wang, and K.Y. Lee: Size effects of the bending stiffness of nanowires. J. Appl. Phys. 105(7), 074306 (2009).

    Article  CAS  Google Scholar 

  31. Y. Sun and Q. Chen: Diameter dependent strength of carbon nanotube reinforced composite. Appl. Phys. Lett. 95(2), 021901 (2009).

    Article  CAS  Google Scholar 

  32. M-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).

    Article  CAS  Google Scholar 

  33. K. Lee, B. Lukic, A. Magrez, J.W. Seo, G.A.D. Briggs, A.J. Kulik, and L. Forro: Diameter-dependent elastic modulus supports the metastable-catalyst growth of carbon nanotubes. Nano Lett. 7(6), 1598 (2007).

    Article  CAS  Google Scholar 

  34. P. Poncharal, Z.L. Wang, D. Ugarte, and W.A. de Heer: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999).

    Article  CAS  Google Scholar 

  35. D.H. Robertson, D.W. Brenner, and J.W. Mintmire: Energetics of nanoscale graphitic tubules. Phys. Rev. B 45(21), 12592–12595 (1992).

    Article  CAS  Google Scholar 

  36. B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, and H.D. Espinosa: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology 3(10), 626–631 (2008).

    Article  CAS  Google Scholar 

  37. M-S. Wang, D. Golberg, and Y. Bando: Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects. Adv. Mater. 22(36), 4071 (2010).

    Article  CAS  Google Scholar 

  38. Y. Nakayama: Plasticity of carbon nanotubes: Aiming at their use in nanosized devices. Jpn. J. Appl. Phys. 46, 5005 (2007).

    Article  CAS  Google Scholar 

  39. C. Wei, K. Cho, and D. Srivastava: Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 67(11), 115407 (2003).

    Article  CAS  Google Scholar 

  40. E.T. Thostenson and T-W. Chou: Nanotube buckling in aligned multi-wall carbon nanotube composites. Carbon 42(14), 3015 (2004).

    Article  CAS  Google Scholar 

  41. C. Ducati, I. Alexandrou, M. Chhowalla, J. Robertson, and G.A.J. Amaratunga: The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition. J. Appl. Phys. 95(11), 6387 (2004).

    Article  CAS  Google Scholar 

  42. L. Chang and C. Hui-Ming: Carbon nanotubes for clean energy applications. J. Phys. D: Appl. Phys. 14, R231 (2005).

    Google Scholar 

  43. C. Du, J. Yeh, and N. Pan: High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16(4), 350 (2005).

    Article  CAS  Google Scholar 

  44. V.V.N. Obreja: On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material–A review. Physica E 40(7), 2596 (2008).

    Article  CAS  Google Scholar 

  45. J. Li and R.J. Andrews: Trimodal nanoelectrode array for precise deep brain stimulation: Prospects of a new technology based on carbon nanofiber arrays, in Operative Neuromodulation, edited by D.E. Sakas and B.A. Simpson (Springer-Verlag, Austria, 2007), pp. 537–545.

    Chapter  Google Scholar 

  46. S. Minnikanti, P. Skeath, and N. Peixoto: Electrochemical characterization of multi-walled carbon nanotube coated electrodes for biological applications. Carbon 47(3), 884 (2009).

    Article  CAS  Google Scholar 

  47. T.D.B. Nguyen-Vu, C. Hua, A.M. Cassell, R.J. Andrews, M. Meyyappan, and L. Jun: Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans.Biomed. Eng. 54(6), 1121 (2007).

    Article  Google Scholar 

  48. T.S. Phely-Bobin, T. Tiano, B. Farrell, R. Fooksa, L. Robblee, D.J. Edell, and R. Czerw: Carbon nanotube based electrodes for neuroprosthetic applications, in Electrobiological Interfaces on Soft Substrates, edited by J.P. Conde, B. Morrison, and S.P. Lacour (Mater. Res. Soc. Symp. Proc. 926E, Warrendale, PA, 2006), 0926-CC04-01.

  49. K. Wang, H.A. Fishman, H. Dai, and J.S. Harris: Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6(9), 2043 (2006).

    Article  CAS  Google Scholar 

  50. A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, and L. Ballerini: Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27(26), 6931 (2007).

    Article  CAS  Google Scholar 

  51. S. Minnikanti, M.G. Pereira, S. Jaraiedi, K. Jackson, C.M. Costa-Neto, Q. Li, and N. Peixoto: In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus. J. Neural Eng. 7(1), 16002 (2010).

    Article  Google Scholar 

  52. S.R. Yeh, Y.C. Chen, H.C. Su, T.R. Yew, H.H. Kao, Y.T. Lee, T.A. Liu, H. Chen, Y.C. Chang, and P. Chang: Interfacing neurons both extracellularly and intracellularly using carbon-nanotube probes with long-term endurance. Langmuir 25(13), 7718 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by Grants ECCS-0801942, and DMR-1106173 from the National Science Foundation and 1R21NS070033-01A1 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles B. Parker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, C.B., Raut, A.S., Brown, B. et al. Three-dimensional arrays of graphenated carbon nanotubes. Journal of Materials Research 27, 1046–1053 (2012). https://doi.org/10.1557/jmr.2012.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.43

Navigation