Skip to main content
Log in

Piezoelectric and mechanical properties of structured PZT–epoxy composites

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Structured lead zirconium titanate (PZT)–epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage on piezoelectric properties of the composites is studied for various volume fractions of PZT composites. The experimentally observed piezoelectric and dielectric properties have been compared with theoretical models. Dielectrophoretically structured composites exhibit higher piezoelectric voltage coefficients compared to 0–3 composites. Structured composites with 0.1 volume fraction of PZT have the highest piezoelectric voltage coefficient. The flexural strength and bending modulus of the structured and random composites were analyzed using three-point bending tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. T.R. Gururaja, W.A. Schulze, L.E. Cross, R.E. Newnham, B.A. Auld, and Y.J. Wang: Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Son. Ultrason. 32, 481 (1985).

    Article  Google Scholar 

  2. E.K. Akdogan, M. Allahverdi, and A. Safari: Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746 (2005).

    Article  Google Scholar 

  3. R.E. Newnham, L.J. Bowen, K.A. Klicker, and L.E. Cross: Composite piezoelectric transducers. J. Mater. Eng. 2, 93 (1980).

    CAS  Google Scholar 

  4. R.E. Newnham, D.P. Skinner, and L.E. Cross: Connectivity and piezoelectric and pyroelectric composite. Mater. Res. Bull. 13, 525 (1978).

    Article  CAS  Google Scholar 

  5. T.F. McNulty, V.F. Janas, and A. Safari: Novel processing of 1-3 ceramic/polymer composites for transducer applications. J. Am. Ceram. Soc. 78, 2913 (1995).

    Article  CAS  Google Scholar 

  6. H. Taunaumang, I.L. Guy, and H.L.W. Chan: Electromechanical properties of 1-3 piezoelectric ceramic/polymer composites. J. Appl. Phys. 76, 484 (1994).

    Article  CAS  Google Scholar 

  7. R.K. Panda, V.F. Janas, and A. Safari: Fabrication and properties of fine scale 1-3 piezoelectric ceramic/polymer composites for ultrasonic transducer applications. In Proceedings of the 10th IEEE International Symposium Applications of Ferroelectrics, 1996; J.W. Silwa, Jr., S. Ayter, J.P. Mohr, ed., IEEE, Piscataway, NJ, 1996. p. 551.

    Google Scholar 

  8. C.J. Dias and K.D. Das Gupta: Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 39, 706 (1996).

    Article  Google Scholar 

  9. K.A. Klicker, J.V. Biggers, and R.E. Newnham: Piezoelectric composites of PZT and epoxy for hydrostatic transducer applications. J. Am. Ceram. Soc. 64, 5 (1981).

    Article  Google Scholar 

  10. J.W. Silwa, J.S. Ayter, and Mohr III: Method for making piezoelectric composite. U.S. Patent No. 5 239 736, 1993.

  11. U. Bast, H. Kaarmann, K. Lubitz, M. Vogt, W. Wersing, and D. Carmer: Composite ultrasound transducer for manufacturing a structured component therefor of piezoelectric ceramic. U.S. Patent No. 5 164 920, 1992.

  12. S. Livneh, V. Janas, and A. Safari: Development of fine scale PZT ceramic fiber/polymer shell composite transducer. J. Am. Ceram. Soc. 78, 1900 (1995).

    Article  CAS  Google Scholar 

  13. A. Safari, M. Allahverdi, and E.K. Akdogan: Solid freeform fabrication of piezoelectric sensors and actuators. J. Mater. Sci. 41, 177 (2006).

    Article  CAS  Google Scholar 

  14. V.F. Jans and A. Safari: Overview of fine-scale piezoelectric ceramic/polymer composite processing. J. Am. Ceram. Soc. 78, 2945 (1995).

    Article  Google Scholar 

  15. C.P. Bowen, T.R. Shrout, R.E. Newnham, and C.A. Randall: Tunable electric field processing of composite materials. J. Intell. Mater. Syst. Struct. 6, 159 (1995).

    Article  CAS  Google Scholar 

  16. D.A. van den Ende, B.F. Bory, W.A. Groen, and S. van der Zwaag: Improving the d33 and g33 properties of 0–3 piezoelectric composites by dielectrophoresis. J. Appl. Phys. 107, 024107 (2010).

    Article  Google Scholar 

  17. C.A. Randall, D.V. Miller, J.H. Adair, and A.S. Bhalla: Processing of electroceramic-polymer composites using the electrorheological effect. J. Mater. Res. 8, 899 (1993).

    Article  CAS  Google Scholar 

  18. S.A. Wilson, G.M. Maistros, and R.W. Whatmore: Structure modification of 0-3 piezoelectric ceramic/polymer composites through dielectrophoresis. J. Phys. D: Appl. Phys. 38, 175 (2005).

    Article  CAS  Google Scholar 

  19. C. Park and R.E. Robertson: Aligned microstructure of some particulate polymer composites obtained with an electric field. J. Mater. Sci. 33, 3541 (1998).

    Article  CAS  Google Scholar 

  20. T. Yamada, T. Ueda, and T. Kitayama: Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53, 4328 (1982).

    Article  CAS  Google Scholar 

  21. T. Furukawa, K. Fujino, and E. Fukada: Electromechanical properties in the composites of epoxy-resin and PZT ceramics. Jpn. J. Appl. Phys. 15, 2119 (1976).

    Article  CAS  Google Scholar 

  22. T. Furukawa, T.K. Ishida, and E. Fukada: Piezoelectric properties in the composite systems of polymers and PZT ceramics. J. Appl. Phys. 50, 4904 (1979).

    Article  CAS  Google Scholar 

  23. C.P. Bowen, R.E. Newnham, and C.A. Randall: Dielectric properties of dielectrophoretically assembled particulate-polymer composites. J. Mater. Res. 13, 205 (1998).

    Article  CAS  Google Scholar 

  24. T. Zakari, J.P. Laurent, and M. Vaculin: Theoretical evidence for ‘Lichtenecker’s mixture formulae’ based on the effective medium theory. J. Phys. D: Appl. Phys. 31, 1589 (1998).

    Article  Google Scholar 

  25. K. Lichtenecker: Dielectric constant of natural and synthetic mixtures. Phys. Z. 27, 115 (1926).

    CAS  Google Scholar 

  26. N.E. Dowling: Mechanical Behaviour of Materials: Engineering Materials for Deformation, Fracture, and Fatigue (Prentice-Hall Inc., Englewood Cliffs, NJ, 1993).

    Google Scholar 

  27. D.A. van den Ende, P. De Almeida, and S. van der Zwaag: Piezoelectric and mechanical properties of novel composites of PZT and a liquid crystalline thermosetting resin. J. Mater. Sci. 42, 6417 (2007).

    Article  CAS  Google Scholar 

  28. I. Babu, D.A. van den Ende, and G. De With: Processing and characterization of piezoelectric 0-3 PZT/LCT/PA composites. J. Phys. D: Appl. Phys. 43, 425402 (2010).

    Article  Google Scholar 

  29. B.V. Hiremath, A. Kingon, and J.V. Biggers: Reaction sequence in the formation of lead zirconate-lead titanate solid solution: Role of raw materials. J. Am. Ceram. Soc. 66(11), 790–793 (1983).

    Article  CAS  Google Scholar 

  30. D.A. van den Ende, W.A. Groen, and S. van der Zwaag: The effect of calcining temperature on the properties of 0-3 piezoelectric composites of PZT and a liquid crystalline thermosetting polymer. J. Electroceram. 27, 13 (2011).

    Article  CAS  Google Scholar 

  31. M.H. Lee, A. Halliyal, and R.E. Newnham: Poling of coprecipitated lead titanate-epoxy 0–3 composites. J. Am. Ceram. Soc. 72, 986 (1989).

    Article  CAS  Google Scholar 

  32. W.S. Rasband: IMAGEJ (U.S. National Institutes of Health, Bethesda, MD, 2007).

    Google Scholar 

  33. E.S.A. Rashid, H.M. Akil, K. Ariffin, and C. Choong Kooi: The mechanical and thermal properties of alumina filled epoxy. In Proceedings of 31st International Conference on Electronics Manufacturing and Technology, (IEEE Publications, New Brunswick, NJ, 2006); p. 282.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Smartmix funding program (Grant No. SMVA06071), as part of the program “Smart systems based on integrated Piezo.” The authors are grateful to Morgan Electro Ceramics for providing the PZT 507 powder used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nijesh Kunnamkuzhakkal James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, N.K., van den Ende, D., Lafont, U. et al. Piezoelectric and mechanical properties of structured PZT–epoxy composites. Journal of Materials Research 28, 635–641 (2013). https://doi.org/10.1557/jmr.2012.428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.428

Navigation