Skip to main content

Advertisement

Log in

The essence and efficiency limits of bulk-heterostructure organic solar cells: A polymer-to-panel perspective

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2014

This article has been updated

Abstract

Bulk-heterojunction organic photovoltaic (BHJ-OPV) technology promises high efficiency at ultralow cost and weight, with potential for nontraditional applications such as building-integrated photovoltaic (PV). There is a widespread presumption that the complexity of morphology makes carrier transport in OPV irreducibly complicated and, possibly, beyond predictive modeling. However, understanding the complex morphology is important because it not only dictates cell efficiency but also the panel performance and the operating lifetime. In this paper, we derive the fundamental thermodynamic as well as morphology-specific practical limits of BHJ-OPV efficiency and lifetime. We find that performance improvement relies not only on morphology engineering but also on increasing the effective mobility–lifetime (μτ) product, the cross-gap between donor/acceptors, and reducing the series resistance. Even if the OPV fails to achieve the highest efficiency anticipated by the thermodynamic limit, its novel form factor, lightweight, and transparency can make it a commercially viable option for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
TABLE II.
FIG. 3.
FIG. 4.
TABLE III.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

Change history

References

  1. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  2. S.R. Forrest: The limits to organic photovoltaic cell efficiency. MRS Bull. 30, 28–32 (2005).

    Article  CAS  Google Scholar 

  3. F.C. Krebs, S.A. Gevorgyan, and J. Alstrup: A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442–5451 (2009).

    Article  CAS  Google Scholar 

  4. C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, and S.P. Williams: Polymer–fullerene bulk‐heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010).

    Article  CAS  Google Scholar 

  5. J. Nelson: Polymer: Fullerene bulk heterojunction solar cells. Mater. Today 14, 462 (2011).

    Article  CAS  Google Scholar 

  6. Y. Liang and L. Yu: A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc. Chem. Res. 43, 1227–1236 (2010).

    Article  CAS  Google Scholar 

  7. S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, and A.J. Heeger: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297–302 (2009).

    Article  CAS  Google Scholar 

  8. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001).

    Article  CAS  Google Scholar 

  9. F. Padinger, R.S. Rittberger, and N.S. Sariciftci: Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85–88 (2003).

    Article  CAS  Google Scholar 

  10. G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005).

    Article  CAS  Google Scholar 

  11. W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005).

    Article  CAS  Google Scholar 

  12. P.W.M. Blom, V.D. Mihailetchi, L.J.A. Koster, and D.E. Markov: Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv. Mater. 19, 1551–1566 (2007).

    Article  CAS  Google Scholar 

  13. C. Deibel and V. Dyakonov: Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010).

    Article  CAS  Google Scholar 

  14. B.A. Gregg: Excitonic solar cells. J. Phys. Chem. B 107, 4688–4698 (2003).

    Article  CAS  Google Scholar 

  15. T. Kirchartz, K. Taretto, and U. Rau: Efficiency limits of organic bulk heterojunction solar cells. J. Phys. Chem. C 113, 17958–17966 (2009).

    Article  CAS  Google Scholar 

  16. A.C. Mayer, M.F. Toney, S.R. Scully, J. Rivnay, C.J. Brabec, M. Scharber, M. Koppe, M. Heeney, I. McCulloch, and M.D. McGehee: Bimolecular crystals of fullerenes in conjugated polymers and the implications of molecular mixing for solar cells. Adv. Funct. Mater. 19, 1173–1179 (2009).

    Article  CAS  Google Scholar 

  17. B. Ray, P.R. Nair, and M.A. Alam: Annealing dependent performance of organic bulk-heterojunction solar cells: A theoretical perspective. Solar Energy Mater. Solar Cells 95, 3287–3294 (2011).

    Article  CAS  Google Scholar 

  18. S.M. Sze: Physics of Semiconductor Devices (John Wiley & Sons, New York, NY, 1981).

    Google Scholar 

  19. N.C. Giebink, G.P. Wiederrecht, M.R. Wasielewski, and S.R. Forrest: Thermodynamic efficiency limit of excitonic solar cells. Phys. Rev. B 83, 195326 (2011).

    Article  CAS  Google Scholar 

  20. R.D. Pensack and J.B. Asbury: Beyond the adiabatic limit: Charge photogeneration in organic photovoltaic materials. J. Phys. Chem. Lett. 1, 2255–2263 (2010).

    Article  CAS  Google Scholar 

  21. J.D. Servaites, M.A. Ratner, and T.J. Marks: Practical efficiency limits in organic photovoltaic cells: Functional dependence of fill factor and external quantum efficiency. Appl. Phys. Lett. 95, 163302-3 (2009).

  22. J. Li, B. Ray, M.A. Alam, and M. Östling: Threshold of hierarchical percolating systems. Phys. Rev. E 85, 021109 (2012).

    Article  CAS  Google Scholar 

  23. I.M. Lifshitz and V.V. Slyozov: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  Google Scholar 

  24. B. Ray and M.A. Alam: A compact physical model for morphology induced intrinsic degradation of organic bulk heterojunction solar cell. Appl. Phys. Lett. 99, 033303-3 (2011).

  25. B. Ray, M.S. Lundstrom, and M.A. Alam: Can morphology tailoring improve the open circuit voltage of organic solar cells? Appl. Phys. Lett. 100, 013307–013307-3 (2012).

    Article  CAS  Google Scholar 

  26. B. Ray and M.A. Alam: Random vs regularized OPV: Limits of performance gain of organic bulk heterojunction solar cells by morphology engineering. Solar Energy Mater. Solar Cells 99, 204–212 (2012).

    Article  CAS  Google Scholar 

  27. S. Dongaonkar, J.D. Servaites, G.M. Ford, S. Loser, J. Moore, R.M. Gelfand, H. Mohseni, H.W. Hillhouse, R. Agrawal, M.A. Ratner, T.J. Marks, M.S. Lundstrom, and M.A. Alam: Universality of non-ohmic shunt leakage in thin-film solar cells. J. Appl. Phys. 108, 124509 (2010).

    Article  CAS  Google Scholar 

  28. W. Shockley and H.J. Queisser: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  29. A. Polman and H.A. Atwater: Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11, 174–177 (2012).

    Article  CAS  Google Scholar 

  30. M.R. Khan and M.A. Alam: Fundamentals of PV efficiency interpreted by a two-level model. Am. J. Phys. (2012, accepted).

    Google Scholar 

  31. L.C. Hirst and N.J. Ekins‐Daukes: Fundamental losses in solar cells. Prog. Photovoltaics Res. Appl. 19, 286–293 (2011).

    Article  Google Scholar 

  32. M.A. Green: Analytical treatment of Trivich–Flinn and Shockley–Queisser photovoltaic efficiency limits using polylogarithms. Prog. Photovoltaics Res. Appl. 20, 127–134 (2012).

    Article  Google Scholar 

  33. W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, and M. Riede: Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells. Appl. Phys. Lett. 98, 063301–063301-3 (2011).

    Article  CAS  Google Scholar 

  34. B.P. Rand, D.P. Burk, and S.R. Forrest: Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys. Rev. B 75, 115327 (2007).

    Article  CAS  Google Scholar 

  35. M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, and C.J. Brabec: Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  36. L.J.A. Koster, E.C.P. Smits, V.D. Mihailetchi, and P.W.M. Blom: Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205 (2005).

    Article  CAS  Google Scholar 

  37. T.M. Clarke and J.R. Durrant: Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010).

    Article  CAS  Google Scholar 

  38. K.O. Sylvester-Hvid, S. Rettrup, and M.A. Ratner: Two-dimensional model for polymer-based photovoltaic cells: Numerical simulations of morphology effects. J. Phys. Chem. B 108, 4296–4307 (2004).

    Article  CAS  Google Scholar 

  39. N.C. Giebink, G.P. Wiederrecht, M.R. Wasielewski, and S.R. Forrest: Ideal diode equation for organic heterojunctions. I. Derivation and application. Phys. Rev. B 82, 155305 (2010).

    Article  CAS  Google Scholar 

  40. X. Zhu and A. Kahn: Electronic structure and dynamics at organic donor/acceptor interfaces. MRS Bull. 35, 443–448 (2010).

    Article  CAS  Google Scholar 

  41. S.S. van Bavel, E. Sourty, G. de With, and J. Loos: Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. Nano Lett. 19, 507–513 (2009).

    Article  CAS  Google Scholar 

  42. B.V. Andersson, A. Herland, S. Masich, and O. Inganäs: Imaging of the 3D nanostructure of a polymer solar cell by electron tomography. Nano Lett. 9, 853–855 (2009).

    Article  CAS  Google Scholar 

  43. W. Chen, T. Xu, F. He, W. Wang, C. Wang, J. Strzalka, Y. Liu, J. Wen, D.J. Miller, J. Chen, K. Hong, L. Yu, and S.B. Darling: Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano Lett. 11, 3707–3713 (2011).

    Article  CAS  Google Scholar 

  44. P.G. de Gennes: Dynamics of fluctuations and spinodal decomposition in polymer blends. J. Chem. Phys. 72, 4756–4763 (1980).

    Article  Google Scholar 

  45. R.W. Balluffi, S.M. Allen, W.C. Carter, and R.A. Kemper: Kinetics of Materials (Wiley-Interscience, Hoboken, NJ, 2005).

    Book  Google Scholar 

  46. R.A.L. Jones: Soft Condensed Matter (Oxford University Press, Oxford, New York, 2002).

    Book  Google Scholar 

  47. O. Wodo and B. Ganapathysubramanian: Modeling morphology evolution during solvent-based fabrication of organic solar cells. Comput. Mater. Sci. 55, 113–126 (2012).

    Article  CAS  Google Scholar 

  48. Y. Shang, D. Kazmer, M. Wei, J. Mead, and C. Barry: Numerical simulation of phase separation of immiscible polymer blends on a heterogeneously functionalized substrate. J. Chem. Phys. 128, 224909-7 (2008).

  49. D. Chen, F. Liu, C. Wang, A. Nakahara, and T.P. Russell: Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. Nano Lett. 11, 2071–2078 (2011).

    Article  CAS  Google Scholar 

  50. P. Peumans, S. Uchida, and S.R. Forrest: Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158–162 (2003).

    Article  CAS  Google Scholar 

  51. B.A. Collins, J.E. Cochran, H. Yan, E. Gann, C. Hub, R. Fink, C. Wang, T. Schuettfort, C.R. McNeill, M.L. Chabinyc, and H. Ade: Polarized x-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11, 536–543 (2012).

    Article  CAS  Google Scholar 

  52. F. Liu, Y. Gu, J.W. Jung, W.H. Jo, and T.P. Russell: On the morphology of polymer‐based photovoltaics. J. Polym. Sci., Part B: Polym. Phys. 50, 1018–1044 (2012).

    Article  CAS  Google Scholar 

  53. M.A. Ruderer and P. Müller-Buschbaum: Morphology of polymer-based bulk heterojunction films for organic photovoltaics. Soft Matter. 7, 5482–5493 (2011).

    Article  CAS  Google Scholar 

  54. L. Hou, E. Wang, J. Bergqvist, B.V. Andersson, Z. Wang, C. Müller, M. Campoy‐Quiles, M.R. Andersson, F. Zhang, and O. Inganäs: Lateral phase separation gradients in spin‐coated thin films of high‐performance polymer: Fullerene photovoltaic blends. Adv. Funct. Mater. 21, 3169–3175 (2011).

    Article  CAS  Google Scholar 

  55. L. Li, W. Hu, H. Fuchs, and L. Chi: Controlling molecular packing for charge transport in organic thin films. Adv. Energy Mater. 1, 188–193 (2011).

    Article  CAS  Google Scholar 

  56. S. Schäfer, A. Petersen, T.A. Wagner, R. Kniprath, D. Lingenfelser, A. Zen, T. Kirchartz, B. Zimmermann, U. Würfel, X. Feng, and T. Mayer: Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells. Phys. Rev. B 83, 165311 (2011).

    Article  CAS  Google Scholar 

  57. E. Voroshazi, B. Verreet, T. Aernouts, and P. Heremans: Long-term operational lifetime and degradation analysis of P3HT: PCBM photovoltaic cells. Solar Energy Mater. Solar Cells 95, 1303–1307 (2011).

    Article  CAS  Google Scholar 

  58. A. Seemann, H.J. Egelhaaf, C.J. Brabec, and J.A. Hauch: Influence of oxygen on semi-transparent organic solar cells with gas permeable electrodes. Org. Electron. 19, 1424–1428 (2009).

    Article  CAS  Google Scholar 

  59. F.C. Krebs: Degradation and stability of polymer and organic solar cells. Solar Energy Mater. Solar Cells 92, 685 (2008).

    Article  CAS  Google Scholar 

  60. J. Bhattacharya, R.W. Mayer, M. Samiee, and V.L. Dalal: Photo-induced changes in fundamental properties of organic solar cells. Appl. Phys. Lett. 100, 193501–193501-3 (2012).

    Article  CAS  Google Scholar 

  61. J.A. Renz, T. Keller, M. Schneider, S. Shokhovets, K.D. Jandt, G. Gobsch, and H. Hoppe: Multiparametric optimization of polymer solar cells: A route to reproducible high efficiency. Solar Energy Mater. Solar Cells 93, 508–513 (2009).

    Article  CAS  Google Scholar 

  62. D. Stauffer and A. Aharony: Introduction to Percolation Theory (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  63. J.E. Mark: Physical Properties of Polymers Handbook (Springer, New York, NY, 2006).

    Google Scholar 

  64. F-C. Chen, C-J. Ko, J-L. Wu, and W-C. Chen: Morphological study of P3HT: PCBM blend films prepared through solvent annealing for solar cell applications. Solar Energy Mater. Solar Cells 94, 2426–2430 (2010).

    Article  CAS  Google Scholar 

  65. T. Martens, J. D’Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M. D’Olieslaeger, D. Vanderzande, L. De Schepper, and R. Andriessen: Disclosure of the nanostructure of MDMO-PPV: PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM. Synth. Met. 138, 243–247 (2003).

    Article  CAS  Google Scholar 

  66. N.C. Miller, S. Sweetnam, E.T. Hoke, R. Gysel, C.E. Miller, J.A. Bartelt, X. Xie, M.F. Toney, and M.D. McGehee: Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene. Nano Lett. 12, 1566–1570 (2012).

    Article  CAS  Google Scholar 

  67. L. Zeng, C.W. Tang, and S.H. Chen: Effects of active layer thickness and thermal annealing on polythiophene: Fullerene bulk heterojunction photovoltaic devices. Appl. Phys. Lett. 97, 053305-3 (2010).

  68. L. Meng, Y. Shang, Q. Li, Y. Li, X. Zhan, Z. Shuai, R.G.E. Kimber, and A.B. Walker: Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics. J. Phys. Chem. B 114, 36–41 (2010).

    Article  CAS  Google Scholar 

  69. D.C. Coffey, A.J. Ferguson, N. Kopidakis, and G. Rumbles: Photovoltaic charge generation in organic semiconductors based on long-range energy transfer. ACS Nano 4, 5437–5445 (2010).

    Article  CAS  Google Scholar 

  70. C.G. Shuttle, R. Hamilton, B.C. O’Regan, J. Nelson, and J.R. Durrant: Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices. Proc. Natl. Acad. Sci. U.S.A. 107, 16448–16452 (2010).

    Article  CAS  Google Scholar 

  71. R. Häusermann, E. Knapp, M. Moos, N.A. Reinke, T. Flatz, and B. Ruhstaller: Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: Parameter extraction and sensitivity analysis. J. Appl. Phys. 106, 104507–104507-9 (2009).

    Article  CAS  Google Scholar 

  72. M. Shah and V. Ganesan: Correlations between morphologies and photovoltaic properties of rod−coil block copolymersl. Macromolecules 43, 543–552 (2010).

    Article  CAS  Google Scholar 

  73. G.A. Buxton and N. Clarke: Predicting structure and property relations in polymeric photovoltaic devices. Phys. Rev. B 74, 085207 (2006).

    Article  CAS  Google Scholar 

  74. P. Dutta, Y. Xie, M. Kumar, M. Rathi, P. Ahrenkiel, D. Galipeau, Q. Qiao, and V. Bommisetty: Connecting physical properties of spin-casting solvents with morphology, nanoscale charge transport, and device performance of poly(3-hexylthiophene): Phenyl-C61-butyric acid methyl ester bulk heterojunction solar cells. J. Photonics Energy 1, 011124–011124-17 (2011).

    Article  CAS  Google Scholar 

  75. W. Geens, T. Martens, J. Poortmans, T. Aernouts, J. Manca, L. Lutsen, P. Heremans, S. Borghs, R. Mertens, and D. Vanderzande: Modelling the short-circuit current of polymer bulk heterojunction solar cells. Thin Solid Films 451–452, 498–502 (2004).

    Article  CAS  Google Scholar 

  76. O. Wodo, S. Tirthapura, S. Chaudhary, and B. Ganapathysubramanian: A graph-based formulation for computational characterization of bulk heterojunction morphology. Org. Electron. 13, 1105–1113 (2012).

    Article  CAS  Google Scholar 

  77. B. Lei, Y. Yao, A. Kumar, Y. Yang, and V. Ozolins: Quantifying the relation between the morphology and performance of polymer solar cells using Monte Carlo simulations. J. Appl. Phys. 104, 024504-6 (2008).

  78. F. Monestier, J-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux: Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend. Solar Energy Mater. Solar Cells 91, 405–410 (2007).

    Article  CAS  Google Scholar 

  79. K. Maturovaá, S.S. van Bavel, M.M. Wienk, R.A.J. Janssen, and M. Kemerink: Morphological device model for organic bulk heterojunction solar cells. Nano Lett. 9, 3032–3037 (2009).

    Article  CAS  Google Scholar 

  80. J. Jo, S-S. Kim, S-I. Na, B-K. Yu, and D-Y. Kim: Time-dependent morphology evolution by annealing processes on polymer: Fullerene blend solar cells. Adv. Funct. Mater. 19, 866–874 (2009).

    Article  CAS  Google Scholar 

  81. O. Wodo and B. Ganapathysubramanian: Computationally efficient solution to the Cahn–Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput. Phys. 230, 6037–6060 (2011).

    Article  CAS  Google Scholar 

  82. R.A. Street, M. Schoendorf, A. Roy, and J.H. Lee: Interface state recombination in organic solar cells. Phys. Rev. B 81, 205307 (2010).

    Article  CAS  Google Scholar 

  83. D. Ray, L. Burtone, K. Leo, and M. Riede: Detection of trap charge in small molecular organic bulk heterojunction solar cells. Phys. Rev. B 82, 125204 (2010).

    Article  CAS  Google Scholar 

  84. D. Ray and K.L. Narasimhan: Measurement of deep states in hole doped organic semiconductors. J. Appl. Phys. 103, 093711–093711-6 (2008).

    Article  CAS  Google Scholar 

  85. K.S. Nalwa, H.K. Kodali, B. Ganapathysubramanian, and S. Chaudhary: Dependence of recombination mechanisms and strength on processing conditions in polymer solar cells. Appl. Phys. Lett. 4, 279 (2011).

    Google Scholar 

  86. T.A.M. Ferenczi, J. Nelson, C. Belton, A.M. Ballantyne, M. Campoy-Quiles, F.M. Braun, and D.D.C. Bradley: Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process. J. Phys. Condens. Matter 20, 475203 (2008).

    Article  CAS  Google Scholar 

  87. H. Kim, M. Shin, J. Park, and Y. Kim: Effect of long time annealing and incident light intensity on the performance of polymer: Fullerene solar cells. IEEE Trans. Nanotechnol. 9, 400–406 (2010).

    Article  Google Scholar 

  88. C. Uhrich, D. Wynands, S. Olthof, M.K. Riede, K. Leo, S. Sonntag, B. Maennig, and M. Pfeiffer: Origin of open circuit voltage in planar and bulk heterojunction organic thin-film photovoltaics depending on doped transport layers. J. Appl. Phys. 104, 043107-6 (2008).

  89. L.M. Andersson, C. Müller, B.H. Badada, F. Zhang, U. Würfel, and O. Inganäs: Mobility and fill factor correlation in geminate recombination limited solar cells. J. Appl. Phys. 110, 024509 (2011).

    Article  CAS  Google Scholar 

  90. R. Mauer, I.A. Howard, and F. Laquai: Effect of nongeminate recombination on fill factor in polythiophene/methanofullerene organic solar cells. J. Phys. Chem. Lett. 1, 3500–3505 (2010).

    Article  CAS  Google Scholar 

  91. J. Wagner, M. Gruber, A. Wilke, Y. Tanaka, K. Topczak, A. Steindamm, U. Hörmann, A. Opitz, Y. Nakayama, H. Ishii, J. Pflaum, N. Koch, and W. Brütting: Identification of different origins for s-shaped current voltage characteristics in planar heterojunction organic solar cells. J. Appl. Phys. 111, 054509–054509-12 (2012).

    Article  CAS  Google Scholar 

  92. S.R. Cowan, N. Banerji, W.L. Leong, and A.J. Heeger: Charge formation, recombination, and sweep‐out dynamics in organic solar cells. Adv. Funct. Mater. 22, 1116–1128 (2012).

    Article  CAS  Google Scholar 

  93. A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R.H. Friend: The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).

    Article  CAS  Google Scholar 

  94. D. Gupta, S. Mukhopadhyay, and K.S. Narayan: Fill factor in organic solar cells. Solar Energy Mater. Solar Cells 94, 1309–1313 (2010).

    Article  CAS  Google Scholar 

  95. V.D. Mihailetchi, L.J.A. Koster, J.C. Hummelen, and P.W.M. Blom: Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys. Rev. Lett. 93, 216601 (2004).

    Article  CAS  Google Scholar 

  96. M. Limpinsel, A. Wagenpfahl, M. Mingebach, C. Deibel, and V. Dyakonov: Photocurrent in bulk heterojunction solar cells. Phys. Rev. B 81, 085203 (2010).

    Article  CAS  Google Scholar 

  97. D.J. Wehenkel, L.J.A. Koster, M.M. Wienk, and R.A.J. Janssen: Influence of injected charge carriers on photocurrents in polymer solar cells. Phys. Rev. B 85, 125203 (2012).

    Article  CAS  Google Scholar 

  98. A. Petersen, T. Kirchartz, and T.A. Wagner: Charge extraction and photocurrent in organic bulk heterojunction solar cells. Phys. Rev. B 85, 045208 (2012).

    Article  CAS  Google Scholar 

  99. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa: Inkjet printing of single-crystal films. Nature 475, 364–367 (2011).

    Article  CAS  Google Scholar 

  100. J.E. Northrup: Two-dimensional deformation potential model of mobility in small molecule organic semiconductors. Appl. Phys. Lett. 99, 062111–062111-3 (2011).

    Article  CAS  Google Scholar 

  101. M.D. McGehee: Nanostructured organic-inorganic hybrid solar cells. MRS Bull. 34, 95–100 (2009).

    Article  CAS  Google Scholar 

  102. A.A. Gorodetsky, C-Y. Chiu, T. Schiros, M. Palma, M. Cox, Z. Jia, W. Sattler, I. Kymissis, M. Steigerwald, and C. Nuckolls: Reticulated heterojunctions for photovoltaic devices. Angew. Chem. Int. Ed. 49, 7909–7912 (2010).

    Article  CAS  Google Scholar 

  103. S. Berson, R. de Bettignies, S. Bailly, S. Guillerez, and B. Jousselme: Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv. Funct. Mater. 17, 3363–3370 (2007).

    Article  CAS  Google Scholar 

  104. C. Nam: Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices. J. Appl. Phys. 110, 064307 (2011).

    Article  CAS  Google Scholar 

  105. J.E. Allen and C.T. Black: Improved power conversion efficiency in bulk heterojunction organic solar cells with radial electron contacts. ACS Nano 5, 7986–7991 (2011).

    Article  CAS  Google Scholar 

  106. M-H. Hsu, P. Yu, J-H. Huang, C-H. Chang, C-W. Wu, Y-C. Cheng, and C-W. Chu: Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes. Appl. Phys. Lett. 98, 073308-3 (2011).

  107. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V.L. Dalal: A photonic-plasmonic structure for enhancing light absorption in thin film solar cells. Appl. Phys. Lett. 99, 131114–131114-3 (2011).

    Article  CAS  Google Scholar 

  108. A. Tada, Y. Geng, Q. Wei, K. Hashimoto, and K. Tajima: Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nat. Mater. 10, 450–455 (2011).

    Article  CAS  Google Scholar 

  109. T.D. Heidel, D. Hochbaum, J.M. Sussman, V. Singh, M.E. Bahlke, I. Hiromi, J. Lee, and M.A. Baldo: Reducing recombination losses in planar organic photovoltaic cells using multiple step charge separation. J. Appl. Phys. 109, 104502-6 (2011).

  110. Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang: Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10, 296–302 (2011).

    Article  CAS  Google Scholar 

  111. B. Ray and M. Alam: Achieving fill factor above 80% in organic solar cells by charged interface. IEEE J. Photovoltaics 3, 1–8 (2012).

    CAS  Google Scholar 

  112. S. Honda, H. Ohkita, H. Benten, and S. Ito: Selective dye loading at the heterojunction in polymer/fullerene solar cells. Adv. Energy Mater. 1, 588–598 (2011).

    Article  CAS  Google Scholar 

  113. H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P.L. Burn, and P. Meredith: Efficient, large area ITO‐and‐PEDOT‐free organic solar cell sub‐modules. Adv. Mater. 24, 2571–2577 (2012).

    Google Scholar 

  114. A.J. Medford, M.R. Lilliedal, M. Jørgensen, D. Aarø, H. Pakalski, J. Fyenbo, and F.C. Krebs: Grid-connected polymer solar panels: Initial considerations of cost, lifetime, and practicality. Opt. Express 18, A272–A285 (2010).

    Article  CAS  Google Scholar 

  115. F.C. Krebs, S.A. Gevorgyan, B. Gholamkhass, S. Holdcroft, C. Schlenker, M.E. Thompson, B.C. Thompson, D. Olson, D.S. Ginley, S.E. Shaheen, H.N. Alshareef, J.W. Murphy, W.J. Youngblood, N.C. Heston, J.R. Reynolds, S. Jia, D. Laird, S.M. Tuladhar, J.G.A. Dane, P. Atienzar, J. Nelson, J.M. Kroon, M.M. Wienk, R.A.J. Janssen, K. Tvingstedt, F. Zhang, M. Andersson, O. Inganäs, M. Lira-Cantu, R. de Bettignies, S. Guillerez, T. Aernouts, D. Cheyns, L. Lutsen, B. Zimmermann, U. Würfel, M. Niggemann, H.-F. Schleiermacher, P. Liska, M. Grätzel, P. Lianos, E.A. Katz, W. Lohwasser, and B. Jannon: A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules. Solar Energy Mater. Solar Cells 93, 1968–1977 (2009).

    Article  CAS  Google Scholar 

  116. S. Dongaonkar, Y. Karthik, S. Mahapatra, and M.A. Alam: Physics and statistics of non-ohmic shunt conduction and metastability in amorphous silicon p–i–n solar cells. IEEE J. Photovoltaics 1, 111–117 (2011).

    Article  Google Scholar 

  117. S. Dongaonkar and M. Alam: End-to-end modeling for variability and reliability analysis of thin film PV. IEEE Int. Rel. Phys. Symp. (IRPS), 2012 4A.4.1–4A.4.6.

    Google Scholar 

  118. C.A. Wolden, J. Kurtin, J.B. Baxter, I. Repins, S.E. Shaheen, J.T. Torvik, A.A. Rockett, V.M. Fthenakis, and E.S. Aydil: Photovoltaic manufacturing: Present status, future prospects, and research needs. J. Vac. Sci. Technol., A 29, 030801 (2011).

    Article  CAS  Google Scholar 

  119. K. Kim, J. Liu, M.A.G. Namboothiry, and D.L. Carroll: Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 90, 163511-3 (2007).

Download references

ACKNOWLEDGMENTS

The work was supported by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award No. DE-SC0001085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad A. Alam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, M.A., Ray, B., Khan, M.R. et al. The essence and efficiency limits of bulk-heterostructure organic solar cells: A polymer-to-panel perspective. Journal of Materials Research 28, 541–557 (2013). https://doi.org/10.1557/jmr.2012.425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.425

Navigation