Skip to main content
Log in

Bismuth telluride-based thermoelectric materials: Coatings as protection against thermal cycling effects

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermoelectric (TE) devices, both TE generators (TEGs) and TE coolers (TECs), have short service lives as TE materials undergo degradation from sublimation, oxidation and reactions in corrosive environments at high temperatures. We have investigated four high-temperature polymers (HTPs) as candidates for TE element coatings and/or TE device fillers to minimize or prevent this degradation. Two of these HTPs have shown good thermal stability in the 400–500 °C temperature range. The coatings were initially applied to bismuth telluride (Bi2Te3)-based TE materials that are used for commercial power generation devices specified for operation up to 250 °C. The HTPs protect the Bi2Te3 from both weight loss and weight gain up to 500 °C. This is clearly outside the optimum TE operation range of Bi2Te3 materials, but demonstrates the ability of the HTP coatings to protect the Bi2Te3 materials at least up to 250 °C. The properties that HTP materials demonstrated during the examination of suitability of their use for TE element coatings and/or TE device fillers using Bi2Te3are expected to hold good for higher operating temperature TE materials also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

REFERENCES

  1. G.S. Nolas, J. Sharp, and H.J. Goldsmid: Thermoelectrics Basic Principles and New Materials Developments, Vol. 45 (Springer Series in Materials Science, Heidelberg, Germany, 2001).

  2. S.B. Riffat and X. Ma: Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  3. L.E. Bell: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  4. W. Brostow, T. Datashvili. R. McCarty, and J. White: Copper viscoelasticity manifested in scratch recovery. Mater. Chem. Phys. 124, 371 (2010).

    Article  CAS  Google Scholar 

  5. J. Bierschenk: In Energy Harvesting Technologies, Chap. 12, S. Priya and D.J. Inman ed.; Springer: Heidelberg, 2009.

  6. F.J. DiSalvo: Thermoelectric cooling and power generation. Science 285, 703 (1999).

    Article  CAS  Google Scholar 

  7. Thermoelectrics Handbook–Macro to Nano, D.M. Rowe, ed.; (Taylor and Francis: New York, 2006).

    Google Scholar 

  8. Marlow Industries, Inc.: EverGen Energy Harvesting Product Series, http://www.marlow.com. (accessed January 10, 2012).

    Google Scholar 

  9. Marlow Industries, Inc.: Thermoelectric Generator Product Series, http://www.marlow.com.

  10. B.C. Sales, D. Mandrus, and R.K. Williams: Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  11. J-P. Fleurial: Thermoelectric power generation materials: Technology and application opportunities. JOM 61, 79 (2009).

    Article  CAS  Google Scholar 

  12. T.M. Tritt, H. Böttner, and L. Chen: Thermoelectrics: Direct solar thermal energy conversion. MRS Bull. 33, 366 (2008).

    Article  CAS  Google Scholar 

  13. B. Yu, Q. Zhang, H. Wang, X. Wang, H. Wang, D. Wang, H. Wang, G.J. Snyder, G. Chen, and Z.F. Ren: Thermoelectric property studies on thallium-doped lead telluride prepared by ball milling and hot pressing. J. Appl. Phys. 108, 016104 (2010).

    Article  CAS  Google Scholar 

  14. D.L. Medlin and G.J. Snyder: Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 14, 226 (2009).

    Article  CAS  Google Scholar 

  15. M.S. El-Genk, H.H. Saber, T. Caillat, and J. Sakamoto: Tests results and performance comparisons of coated and uncoated skutterudite-based segmented unicouples. Energy Convers. Manage. 47, 174 (2006).

    Article  CAS  Google Scholar 

  16. J. Sakamoto, T. Caillat, J-P. Fleurial, and G.J. Snyder: Method of suppressing sublimation in advanced thermoelectric devices and resulting apparatus. NASA Tech. Briefs, NPO-40040, September 2007.

    Google Scholar 

  17. S. Jones and J. Sakamoto: Applications of aerogels in space applications, Chapter 32. In Aerogels Handbook, Springer, Heidelberg, 2011.

    Google Scholar 

  18. W. Ping, D. ChunLei, Z. Wen-Yu, and Z. Qing-Jie: Enhancement of thermal stability of filled skutterudite thermoelectric materials through nano-SiO2 coating. J. Inorg. Mater. 25, 577 (2010).

    Article  CAS  Google Scholar 

  19. M.S. El-Genk, H.H. Saber, T. Caillat, and J. Sakamoto: Effects of metallic coatings on the performance of skutterudite-based segmented unicouples. Energy Convers. Manage. 48, 1383 (2007).

    Article  CAS  Google Scholar 

  20. B.Y. Yoldas: Alumina sol preparation from alkoxides. Ceram. Bull. 54, 289 (1975).

    CAS  Google Scholar 

  21. Y. Liu, D. Ma, X. Han, X. Bao, W. Frandsen, D. Wang, and D. Su: Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina. Mater. Lett. 62, 1297 (2008).

    Article  CAS  Google Scholar 

  22. W. Brostow and T. Datashvili: Chemical modification and characterization of boehmite particles. Chem. Chem. Technol. 2, 27 (2008).

    Google Scholar 

  23. M.S. Ghamsari, Z.A. Said Mahzar, S. Radiman, A.M. Abdul Hamid, and S. Rahmani Khalilabad: Facile route for preparation of highly crystalline γ-Al2O3 nanopowder. Mater. Lett. 72, 32 (2012).

    Article  CAS  Google Scholar 

  24. K.P. Menard: Thermal transitions and their measurement. In Performance of Plastics, W. Brostow ed.; (Hanser, Munich, 2000), Chapter 8.

    Google Scholar 

  25. E.F. Lucas, B.G. Soares, and E. Monteiro: Caracterização de polimeros (E-papers, Rio de Janeiro, 2001).

    Google Scholar 

  26. U.W. Gedde: Polymer Physics (Springer - Kluver, Dordrecht, 2001).

    Google Scholar 

  27. J-M. Saiter, M. Negahban, P. dos Santos Claro, P. Delabare, and M-R. Garda: Quantitative and transient DSC measurements. I. - Heat capacity and glass transition. J. Mater. Educ. 30, 51 (2008).

    CAS  Google Scholar 

  28. A. Kopczynska and G.W. Ehrenstein: Polymeric surfaces and their true surface tension in solids and melts. J. Mater. Educ. 29, 325 (2007).

    CAS  Google Scholar 

  29. R.C. Desai and R. Kapral: Dynamics of Self-Organized and Self-Assembled Structures (Cambridge University Press, Cambridge, New York, 2009).

    Book  Google Scholar 

  30. M. Hedenqvist, G. Johnsson, T. Tränkner, and U.W. Gedde: Polyethylene exposed to liquid propane: Sorption and permeation kinetics and mechanical properties. Polym. Eng. Sci. 36, 271 (1996).

    Article  CAS  Google Scholar 

  31. A-A.A. Abdel Azim, A.M. Abdel-Raheim, A.M. Atta, W. Brostow, and A.F. El-Kafrawy: Synthesis and characterization of porous crosslinked copolymers for oil spill sorption. e-Polymers 118 (2007).

    Google Scholar 

  32. F. Nilsson, U.W. Gedde, and M.S. Hedenqvist: Penetrant diffusion in polyethylene spherulites assessed by a novel off-lattice Monte-Carlo technique. Eur. Polym. J. 45, 3409 (2009).

    Article  CAS  Google Scholar 

  33. H.F. Mark: Polymers in materials science. J. Mater. Educ. 12, 65 (1990).

    CAS  Google Scholar 

  34. M.S. Hedenqvist and U.W. Gedde: Parameters affecting the determination of transport kinetics data in highly swelling polymers above Tg. Polymer 40, 2381 (1999).

    Article  CAS  Google Scholar 

  35. A. Abdel-Azim, A.M. Abdul-Raheim, A.M. Atta, W. Brostow, and T. Datashvili: Swelling and network parameters of crosslinked porous octadecyl acrylate copolymers as oil spill sorbers. e-Polymers 134 (2009).

    Google Scholar 

  36. A. Adhikari, S. Henning, and G.H. Michler: Influence of γ-irradiation on the deformation behavior of lamellar SBS triblock copolymers. Macromol. Rapid Commun. 23, 622 (2002).

    Article  CAS  Google Scholar 

  37. A. Bobovitch, E.M. Gutmann, S. Henning, and G.H. Michler: Morphology and stress relaxation of biaxially oriented cross-linked polyethylene films. Mater. Lett. 57, 2597 (2003).

    Article  CAS  Google Scholar 

  38. A. Nogales, G. Broza, Z. Roslaniec, K. Schulte, I. Sics, B.S. Hsiao, A. Sanz, M.C. Garcia Gutierrez, D.R. Rueda, C. Domingo, and T.A. Ezquerra: Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly(butylene terephthalate). Macromolecules 37, 7669 (2004).

    Article  CAS  Google Scholar 

  39. R.H. Krämer, M.A. Raza, and U.W. Gedde: Degradation of poly (ethylene-co methacrylic acid)-calcium carbonate nanocomposites. Polym. Degrad. Stab. 92, 1795 (2007).

    Article  CAS  Google Scholar 

  40. G. Broza and K. Schulte: Melt processing and filler/matrix interphase in carbon nanotube reinforced poly(ether-ester) thermoplastic elastomer. Polym. Eng. Sci. 48, 2033 (2008).

    Article  CAS  Google Scholar 

  41. M-D. Bermudez, W. Brostow, F.J. Carrion-Vilches, and J. Sanes: Scratch resistance of polycarbonate containing ZnO nanoparticles: Effects of sliding direction. J. Nanosci. Nanotechnol. 10, 6683 (2010).

    Article  CAS  Google Scholar 

  42. W. Brostow, T. Datashvili, J. Geodakyan, and J. Lou: Thermal and mechanical properties of EPDM/PP + thermal shock-resistant ceramic composites. J. Mater. Sci. 46, 2445 (2011).

    Article  CAS  Google Scholar 

  43. W. Chonkaew, W. Minghvanish, U. Kungliean, N. Rochanawipart, and W. Brostow: Vulcanization characteristics and dynamic mechanical behavior of natural rubber reinforced with silane modified silica. J. Nanosci. Nanotechnol. 11, 2018 (2011).

    Article  CAS  Google Scholar 

  44. G.H. Michler and F.J. Balta-Calleja: Nano- and Micromechanics of Polymers: Structure Modification and Improvement of Properties (Hanser, Munich, 2012).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

Partial financial support from the II–VI Foundation, Bridgeville, PA, is gratefully acknowledged. Support to one of us (L.S.) by the Texas Academy of Mathematics and Science (TAMS), Denton, is acknowledged also.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Brostow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brostow, W., Datashvili, T., Hagg Lobland, H.E. et al. Bismuth telluride-based thermoelectric materials: Coatings as protection against thermal cycling effects. Journal of Materials Research 27, 2930–2936 (2012). https://doi.org/10.1557/jmr.2012.335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.335

Navigation