Skip to main content
Log in

Electron transport in semiconducting SnO2: Intentional bulk donors and acceptors, the interface, and the surface

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2012

This article has been updated

Abstract

The transport properties of doped and undoped, high quality, plasma-assisted molecular beam epitaxy grown tin dioxide (SnO2) thin films are reviewed. Intentional doping can vary the SnO2 resistivity over more than seven orders of magnitude from a transparent conducting oxide-like conductivity up to the semi-insulating range. A region of high unintentional n-type conductivity was identified in the substrate interface region and had to be accounted for. Sb was a well-behaved shallow donor up to the regime of conducting oxides. In and Ga were too deep acceptors to achieve p-type conductivity but were suitable to render SnO2 semi-insulating. While the surface accumulation layer strongly influenced contact properties, its conductance was negligible. The methodology used here for studying the transport can also be applied to other semiconducting oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

Change history

References

  1. M. Batzill and U. Diebold: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47 (2005).

    Article  CAS  Google Scholar 

  2. Z.M. Jarzebski and J.P. Morton: Physical properties of SnO2 materials: II. Electrical properties. J. Electrochem. Soc. 123, 299C (1976).

    Article  CAS  Google Scholar 

  3. M.E. White, M.Y. Tsai, F. Wu, and J.S. Speck: Plasma-assisted molecular beam epitaxy and characterization of SnO2 (101) on r-plane sapphire. J. Vac. Sci. Technol., A 26, 1300 (2008).

    Article  CAS  Google Scholar 

  4. S.K. Vasheghani Farahani, T.D. Veal, A.M. Sanchez, O. Bierwagen, M.E. White, S. Gorfman, P.A. Thomas, J.S. Speck, and C.F. McConville: Influence of charged-dislocation density variations on carrier mobility in heteroepitaxial semiconductors: The case of SnO2 on sapphire. Phys. Rev. (2012, submitted).

    Google Scholar 

  5. M.E. White, O. Bierwagen, M.Y. Tsai, and J.S. Speck: Electron transport properties of antimony doped SnO2 single crystalline thin films grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 106, 093704 (2009).

    Article  Google Scholar 

  6. K. Rakennus, K. Tappura, T. Hakkarainen, H. Asonen, R. Laiho, S.J. Rolfe, and J.J. Dubowski: Interface effects on electrical properties of high purity InP grown by gas-source molecular beam epitaxy. J. Cryst. Growth 110, 910 (1991).

    Article  CAS  Google Scholar 

  7. O. Bierwagen, S. Choi, and J.S. Speck: Hall and Seebeck profiling: Determining surface, interface, and bulk electron transport properties in unintentionally doped InN. Phys. Rev. B 84, 235302 (2011).

    Article  Google Scholar 

  8. M.E. White, O. Bierwagen, M.Y. Tsai, and J.S. Speck: Synthesis and characterization of highly resistive epitaxial indium-doped SnO2. Appl. Phys. Express 3, 051101 (2010).

    Article  Google Scholar 

  9. M.Y. Tsai, M.E. White, and J.S. Speck: Plasma-assisted molecular beam epitaxy of SnO2 on TiO2. J. Cryst. Growth 310, 4256 (2008).

    Article  CAS  Google Scholar 

  10. T. Ohgaki, N. Ohashi, S. Sugimura, H. Ryoken, I. Sakaguchi, Y. Adachi, and H. Haneda: Positive Hall coefficients obtained from contact misplacement on evident n-type ZnO films and crystals. J. Mater. Res. 23, 2293 (2008).

    Article  CAS  Google Scholar 

  11. O. Bierwagen, T. Ive, C.G. Van de Walle, and J.S. Speck: Causes of incorrect carrier-type identification in van der Pauw–Hall measurements. Appl. Phys. Lett. 93, 242108 (2008).

    Article  Google Scholar 

  12. D.C. Look: Electrical and optical properties of p-type ZnO. Semicond. Sci. Technol. 20, S55 (2005).

    Article  CAS  Google Scholar 

  13. O. Bierwagen, T. Nagata, T. Ive, C.G. Van de Walle, and J.S. Speck: Dissipation-factor-based criterion for the validity of carrier-type identification by capacitance-voltage measurements. Appl. Phys. Lett. 94, 152110 (2009).

    Article  Google Scholar 

  14. A.K. Singh, A. Janotti, M. Scheffler, and C.G. Van de Walle: Sources of electrical conductivity in SnO2. Phys. Rev. Lett. 101, 055502 (2008).

    Article  Google Scholar 

  15. C.G. Fonstad and R.H. Rediker: Electrical properties of high-quality stannic oxide crystals. J. Appl. Phys. 42, 2911 (1971).

    Article  CAS  Google Scholar 

  16. A. Tsukazaki, A. Ohtomo, and M. Kawasaki: High-mobility electronic transport in ZnO thin films. Appl. Phys. Lett. 88, 152106 (2006).

    Article  Google Scholar 

  17. H. Toyosaki, M. Kawasaki, and Y. Tokura: Electrical properties of Ta-doped SnO2 thin films epitaxially grown on TiO2 substrate. Appl. Phys. Lett. 93, 132109 (2008).

    Article  Google Scholar 

  18. S. Lany and A. Zunger: Polaronic hole localization and multiple hole binding of acceptors in oxide wide-gap semiconductors. Phys. Rev. B 80, 085202 (2009).

    Article  Google Scholar 

  19. M.Y. Tsai: Plasma-assisted molecular beam epitaxy growth and properties of tin oxide. Ph.D. Thesis, University of California, Santa Barbara, CA, 2010.

    Google Scholar 

  20. A. Schleife, J.B. Varley, F. Fuchs, C. Rödl, F. Bechstedt, P. Rinke, A. Janotti, and C.G. Van de Walle: Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B 83, 035116 (2011).

    Article  Google Scholar 

  21. M.E. White: Molecular beam epitaxy and characterization of stannic oxide. Ph.D. Thesis, University of California, Santa Barbara, CA, 2010.

    Google Scholar 

  22. O. Bierwagen, M.E. White, M.Y. Tsai, T. Nagata, and J.S. Speck: Non-alloyed Schottky and ohmic contacts to as-grown and oxygen-plasma treated n-type SnO2 (110) and (101) thin films. Appl. Phys. Express 2, 106502 (2009).

    Article  Google Scholar 

  23. T. Nagata, O. Bierwagen, M.E. White, M.Y. Tsai, and J.S. Speck: Study of the Au Schottky contact formation on oxygen plasma treated n-type SnO2 (101) thin films. J. Appl. Phys. 107, 033707 (2010).

    Article  Google Scholar 

  24. C.H. Swartz, R.P. Tompkins, N.C. Giles, T.H. Myers, H. Lu, W.J. Schaff, and L.F. Eastman: Investigation of multiple carrier effects in InN epilayers using variable magnetic field hall measurements. J. Cryst. Growth 269, 29 (2004).

    Article  CAS  Google Scholar 

  25. T. Nagata, O. Bierwagen, M.E. White, M.Y. Tsai, Y. Yamashita, H. Yoshikawa, N. Ohashi, K. Kobayashi, T. Chikyow, and J.S. Speck: XPS study of Sb-/In-doping and surface pinning effects on the Fermi level in SnO2 (101) thin films. Appl. Phys. Lett. 98, 232107 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Bierwagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierwagen, O., Nagata, T., White, M.E. et al. Electron transport in semiconducting SnO2: Intentional bulk donors and acceptors, the interface, and the surface. Journal of Materials Research 27, 2232–2236 (2012). https://doi.org/10.1557/jmr.2012.172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.172

Navigation