Skip to main content
Log in

Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical absorption spectra (including excitonic effects) for several transparent conducting oxides (TCOs). We discuss HSE+G0W0 results (based on the hybrid exchange-correlation functional by Heyd, Scuseria, and Ernzerhof, and quasiparticle corrections from approximating the electronic self energy as the product of the Green’s function and the screened Coulomb interaction) for band structures, fundamental band gaps, and effective electron masses of magnesium oxide, zinc oxide, cadmium oxide, tin dioxide, tin oxide, indium (III) oxide and silicon dioxide. The Bethe–Salpeter equation (BSE) is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G0W0 approach and the solution of the BSE are very well suited to describe the electronic structure and the optical properties of various TCOs in good agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
TABLE II.
TABLE III.
FIG. 2.
FIG. 3.

Similar content being viewed by others

References

  1. D.S. Ginley and C. Bright: Transparent conducting oxides. MRS Bull. 25, 18 (2000).

    Google Scholar 

  2. E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 247 (2007).

    Google Scholar 

  3. A. Schleife, C. Rödl, J. Furthmüller, and F. Bechstedt: Electronic and optical properties of MgxZn1−xO and Cdx Zn1−xO from ab initio calculations. New J. Phys. 13(8), 085012 (2011).

    Google Scholar 

  4. A. Seko, A. Togo, F. Oba, and I. Tanaka: Structure and stability of a homologous series of tin oxides. Phys. Rev. Lett. 100, 045702 (2008).

    Google Scholar 

  5. S. Lany and A. Zunger: Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys. Rev. Lett. 98, 045501 (2007).

    Google Scholar 

  6. B.E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, and C.G. Granqvist: Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B 37(17), 10244–10248 (1988).

    CAS  Google Scholar 

  7. R.B.H Tahar, T. Ban, Y. Ohya, and Y. Takahashi: Tin-doped indium oxide thin films: Electrical properties. J. Appl. Phys. 83(5), 2631–2645 (1998).

    Google Scholar 

  8. Z.Q. Li, Y.L. Yin, X.D. Liu, L.Y. Li, H. Liu, and Q.G. Song: Electronic structure and optical properties of Sb-doped SnO2. J. Appl. Phys. 106(8), 083701 (2009).

    Google Scholar 

  9. M.E. White, O. Bierwagen, M.Y. Tsai, and J.S. Speck: Electron transport properties of antimony-doped SnO2 single crystalline thin films grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 106(9), 093704 (2009).

    Google Scholar 

  10. D.B. Buchholz, J. Liu, T.J. Marks, M. Zhang, and R.P.H Chang: Control and characterization of the structural, electrical, and optical properties of amorphous zinc-indium-tin oxide thin films. ACS Appl. Mater. Interfaces 1(10), 2147–2153 (2009).

    CAS  Google Scholar 

  11. T. Minami: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005).

    CAS  Google Scholar 

  12. J. Sun, A. Lu, L. Wang, Y. Hu, and Q. Wan: High-mobility transparent thin-film transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature. Nanotechnology 20(33), 335204 (2009).

    Google Scholar 

  13. O. Bierwagen and J.S. Speck: High electron mobility In2O3 (001) and (111) thin films with nondegenerate electron concentration. Appl. Phys. Lett. 97(7), 072103 (2010).

    Google Scholar 

  14. W.A. Badawy: Improvement of n-Si/SnO2 electrolyte photoelectrochemical cells by Ru deposits. J. Electroanal. Chem. 281(1–2), 85–95 (1990).

    CAS  Google Scholar 

  15. R.R. Lunt and V. Bulovic: Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 98(11), 113305 (2011).

    Google Scholar 

  16. A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer, S.P. Harvey, D.E. Proffit, and T.O. Mason: Transparent conducting oxides for photovoltaics: Manipulation of Fermi level, work function and energy band alignment. Materials 3(11), 4892–4914 (2010).

    CAS  Google Scholar 

  17. J. Robertson: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69(2), 327 (2006).

    CAS  Google Scholar 

  18. K.R. Reyes-Gil, E.A. Reyes-García, and D. Raftery: Nitrogen-doped In2O3 thin film electrodes for photocatalytic water splitting. J. Phys. Chem. C 111(39), 14579–14588 (2007).

    CAS  Google Scholar 

  19. T. Nagata, O. Bierwagen, M.E. White, M.Y. Tsai, Y. Yamashita, H. Yoshikawa, N. Ohashi, K. Kobayashi, T. Chikyow, and J.S. Speck: XPS study of Sb-/In-doping and surface pinning effects on the Fermi level in SnO2 (101) thin films. Appl. Phys. Lett. 98(23), 232107 (2011).

    Google Scholar 

  20. L.F.J Piper, L. Colakerol, P.D.C King, A. Schleife, J. Zúñiga-Pérez, P.A. Glans, T. Learmonth, A. Federov, T.D. Veal, F. Fuchs, V. Muñoz-Sanjosé, F. Bechstedt, C.F. McConville, and K.E. Smith: Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy. Phys. Rev. B 78(16), 165127 (2008).

    Google Scholar 

  21. M.W. Allen, C.H. Swartz, T.H. Myers, T.D. Veal, C.F. McConville, and S.M. Durbin: Bulk transport measurements in ZnO: The effect of surface electron layers. Phys. Rev. B 81, 075211 (2010).

    Google Scholar 

  22. O. Bierwagen, J.S. Speck, T. Nagata, T. Chikyow, Y. Yamashita, H. Yoshikawa, and K. Kobayashi: Depletion of the In2O3 (001) and (111) surface electron accumulation by an oxygen plasma surface treatment. Appl. Phys. Lett. 98(17), 172101 (2011).

    Google Scholar 

  23. M.W. Allen, D.Y. Zemlyanov, G.I.N Waterhouse, J.B. Metson, T.D. Veal, C.F. McConville, and S.M. Durbin: Polarity effects in the x-ray photoemission of ZnO and other wurtzite semiconductors. Appl. Phys. Lett. 98(10), 101906 (2011).

    Google Scholar 

  24. S. Küfner: Ab initio untersuchung von zinnmonoxid- und zinndioxidoberflächen. Master’s Thesis, Friedrich-Schiller-University, Jena, 2011.

    Google Scholar 

  25. P. Ágoston and K. Albe: Thermodynamic stability, stoichiometry, and electronic structure of bcc-In2O3 surfaces. Phys. Rev. B 84, 045311 (2011).

    Google Scholar 

  26. X.Y. Kong and Z.L. Wang: Structures of indium oxide nanobelts. Solid State Commun. 128(1), 1–4 (2003).

    CAS  Google Scholar 

  27. Y. Li, Y. Bando, and D. Golberg: Single-crystalline In2O3 nanotubes filled with In. Adv. Mater. 15(7–8), 581–585 (2003).

    CAS  Google Scholar 

  28. A. Beltrán, J. Andrés, E. Longo, and E.R. Leite: Thermodynamic argument about SnO2 nanoribbon growth. Appl. Phys. Lett. 83(4), 635–637 (2003).

    Google Scholar 

  29. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 1515–1520 (2010).

    CAS  Google Scholar 

  30. V. Müller, M. Rasp, G. Štefanić, J. Ba, S. Günther, J. Rathousky, M. Niederberger, and D. Fattakhova-Rohlfing: Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol-gel procedure. Chem. Mater. 21(21), 5229–5236 (2009).

    Google Scholar 

  31. M.R. Wagner, J.H. Schulze, R. Kirste, M. Cobet, A. Hoffmann, C. Rauch, A.V. Rodina, B.K. Meyer, U. Röder, and K. Thonke: Γ7 valence band symmetry related hole fine splitting of bound excitons in ZnO observed in magneto-optical studies. Phys. Rev. B 80, 205203 (2009).

    Google Scholar 

  32. M.R. Wagner, G. Callsen, J.S. Reparaz, J.H. Schulze, R. Kirste, M. Cobet, I.A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A.V. Rodina, M.R. Phillips, S. Lautenschläger, S. Eisermann, and B.K. Meyer: Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers. Phys. Rev. B 84, 035313 (2011).

    Google Scholar 

  33. F. Matino, L. Persano, V. Arima, D. Pisignano, R.I.R Blyth, R. Cingolani, and R. Rinaldi: Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Phys. Rev. B 72, 085437 (2005).

    Google Scholar 

  34. C.Y. Wang, V. Cimalla, H. Romanus, T. Kups, G. Ecke, T. Stauden, M. Ali, V. Lebedev, J. Pezoldt, and O. Ambacher: Phase-selective growth and properties of rhombohedral and cubic indium oxide. Appl. Phys. Lett. 89(1), 011904 (2006).

    Google Scholar 

  35. W.R.L Lambrecht, A.V. Rodina, S. Limpijumnong, B. Segall, and B.K. Meyer: Valence-band ordering and magneto-optic exciton fine structure in ZnO. Phys. Rev. B 65(7), 075207 (2002).

    Google Scholar 

  36. J. Robertson: Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2. J. Phys. C: Solid State Phys. 12(22), 4767 (1979).

    CAS  Google Scholar 

  37. A. Svane and E. Antoncik: Electronic structure of rutile SnO2, GeO2 and TeO2. J. Phys. Chem. Solids 48(2), 171–180 (1987).

    CAS  Google Scholar 

  38. K. Reimann and M. Steube: Experimental determination of the electronic band structure of SnO2. Solid State Commun. 105(10), 649–652 (1998).

    CAS  Google Scholar 

  39. F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse: Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys. Rev. B 76(11), 115109 (2007).

    Google Scholar 

  40. F. Bechstedt, F. Fuchs, and G. Kresse: Ab initio theory of semiconductor band structures: New developments and progress. Phys. Status Solidi B 246(8), 1877–1892 (2009).

    CAS  Google Scholar 

  41. C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt: Ab initio theory of excitons and optical properties for spin-polarized systems: Application to antiferromagnetic MnO. Phys. Rev. B 77(18), 184408 (2008).

    Google Scholar 

  42. F. Bechstedt, F. Fuchs, and J. Furthmüller: Spectral properties of InN and its native oxide from first principles. Phys. Status Solidi A, 207(5), 1041–1053 (2010).

    CAS  Google Scholar 

  43. A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt: Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations. Phys. Rev. B 80(3), 035112 (2009).

    Google Scholar 

  44. A. Schleife, J.B. Varley, F. Fuchs, C. Rödl, F. Bechstedt, P. Rinke, A. Janotti, and C.G. Van de Walle: Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B 83(3), 035116 (2011).

    Google Scholar 

  45. A. Schleife: Exciting imperfection: Real-structure effects in magnesium-, cadmium-, and zinc-oxide. Ph.D Thesis, Friedrich-Schiller-Universität, Jena, 2010.

    Google Scholar 

  46. André Schleife: Electronic and Optical Properties of MgO, ZnO, and CdO (Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken, Germany, 2011).

    Google Scholar 

  47. Q. Yan, P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, M. Scheffler, and C.G. Van de Walle: Band parameters and strain effects in ZnO and group-III nitrides. Semicond. Sci. Technol. 26(1), 014037 (2011).

    Google Scholar 

  48. A. Schleife, M. Eisenacher, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt: Ab initio description of heterostructural alloys: Thermodynamic and structural properties of MgxZn1−xO and CdxZn1−xO. Phys. Rev. B 81(24), 245210 (2010).

    Google Scholar 

  49. A. Schleife and F. Bechstedt: Real-structure effects: Absorption edge of MgxZn1−xO, CdxZn1−xO, and n-type ZnO from ab initio calculations. Proc. SPIE 8263(1), 826309 (2012).

    Google Scholar 

  50. P. Rinke, A. Schleife, E. Kioupakis, A. Janotti, C. Rödl, F. Bechstedt, M. Scheffler, and C.G. Van de Walle: First-principles optical spectra for F centers in MgO. Phys. Rev. Lett. 108, 126404 (2012).

    Google Scholar 

  51. J. Furthmüller, F. Hachenberg, A. Schleife, D. Rogers, F.H. Teherani, and F. Bechstedt: Clustering of N impurities in ZnO. Appl. Phys. Lett. 100(2), 022107 (2012).

    Google Scholar 

  52. A. Schleife, C. Rödl, F. Fuchs, K. Hannewald, and F. Bechstedt: Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?Phys. Rev. Lett. 107, 236405 (2011).

    Google Scholar 

  53. P. Ágoston, K. Albe, R.M. Nieminen, and M.J. Puska: Intrinsic n-type behavior in transparent conducting oxides: A comparative hybrid functional study of In2O3, SnO2, and ZnO. Phys. Rev. Lett. 103, 245501 (2009).

    Google Scholar 

  54. P. Ágoston, C. Körber, A. Klein, M.J. Puska, R.M. Nieminen, and K. Albe: Limits for n-type doping in In2O3 and SnO2: A theoretical approach by first-principles calculations using hybrid functional methodology. J. Appl. Phys. 108(5), 053511 (2010).

    Google Scholar 

  55. P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964).

    Google Scholar 

  56. W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965).

    Google Scholar 

  57. A. Schleife, F. Fuchs, J. Furthmüller, and F. Bechstedt: First-principles study of ground- and excited state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B 73(24), 245212 (2006).

    Google Scholar 

  58. S. Küfner, A. Schleife, and F. Bechstedt: Unpublished work, 2012.

    Google Scholar 

  59. F. Fuchs and F. Bechstedt: Indium oxide polymorphs from first-principles: Quasiparticle electronic states. Phys. Rev. B 77(15), 155107 (2008).

    Google Scholar 

  60. F. Fuchs: Private communication, 2011.

    Google Scholar 

  61. B. Höffling, A. Schleife, C. Rödl, and F. Bechstedt. Band discontinuities at Si–TCO interfaces from quasiparticle calculations: Comparison of two alignment approaches. Phys. Rev. B 85, 035305 (2012).

    Google Scholar 

  62. M.S. Hybertsen and S.G. Louie: Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34(8), 5390–5413 (1986).

    CAS  Google Scholar 

  63. J.P. Perdew and M. Levy: Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities. Phys. Rev. Lett. 51, 1884–1887 (1983).

    CAS  Google Scholar 

  64. L.J. Sham and M. Schlüter: Density-functional theory of the energy gap. Phys. Rev. Lett. 51, 1888–1891 (1983).

    Google Scholar 

  65. L. Hedin: New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139(3A), A796–A823 (1965).

    Google Scholar 

  66. L. Hedin and S. Lundqvist: Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, in Advances in Research and Applications of Solid State Physics, Vol. 23, edited by D.T.F Seiz and H. Ehrenreich (Academic Press, Waltham, MA, 1970); pp. 1–181.

    Google Scholar 

  67. J. Heyd, G.E. Scuseria, and M. Ernzerhof: Erratum: “Hybrid functionals based on a screened coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys., 124(21):219906, 2006.

    Google Scholar 

  68. J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, and J.G. Ángyán: Screened hybrid density functionals applied to solids. J. Chem. Phys. 124(15), 154709 (2006).

    CAS  Google Scholar 

  69. J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, and J.G. Ángyán: Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)].J. Chem. Phys., 125(24):249901, 2006.

    Google Scholar 

  70. A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, P.H. Jefferson, T.D. Veal, C.F. McConville, L.F.J Piper, A. DeMasi, K.E. Smith, H. Lösch, R. Goldhahn, C. Cobet, J. Zúñiga-Pérez, and V. Muñoz-Sanjosé: Ab initio studies of electronic and spectroscopic properties of MgO, ZnO, and CdO. J. Korean Phys. Soc. 53(5), 2811–2815 (2008).

    CAS  Google Scholar 

  71. A. Schleife, F. Fuchs, C. Rödl, J. Furthmüller, and F. Bechstedt: Band-structure and optical transition parameters of wurtzite MgO, ZnO, and CdO from quasiparticle calculations. Phys. Status Solidi B 246(9), 2150–2153 (2009).

    CAS  Google Scholar 

  72. D. Hobbs, G. Kresse, and J. Hafner: Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 62(17), 11556–11570 (2000).

    CAS  Google Scholar 

  73. A. Schleife, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt: Strain influence on valence-band ordering and excitons in ZnO: An ab initio study. Appl. Phys. Lett. 91(24), 241915 (2007).

    Google Scholar 

  74. V.I. Anisimov, J. Zaanen, and O.K. Andersen: Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44(3), 943–954 (1991).

    CAS  Google Scholar 

  75. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998).

    CAS  Google Scholar 

  76. W.G. Aulbur, L. Jönsson, and J.W. Wilkins: Quasiparticle calculations in solids, in Advances in Research and Applications of Solid State Physics, Vol. 54, edited by H. Ehrenreich and F. Spaepen (Academic Press, Waltham, MA, 1999); pp. 1–218.

    Google Scholar 

  77. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996).

    CAS  Google Scholar 

  78. G. Kresse and J. Furthmüller: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996).

    CAS  Google Scholar 

  79. M. Shishkin and G. Kresse: Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 74(3), 035101, (2006).

    Google Scholar 

  80. P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994).

    Google Scholar 

  81. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999).

    CAS  Google Scholar 

  82. G. Strinati: Application of the Green’s functions method to the study of the optical properties of semiconductors. Riv. Nuovo Cimento 11(12), 1–86 (1988).

    CAS  Google Scholar 

  83. G. Onida, L. Reining, and A. Rubio: Electronic excitations: Density functional versus many-body Green’s function approaches. Rev. Mod. Phys. 74(2), 601–659 (2002).

    CAS  Google Scholar 

  84. C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt: Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys. Rev. B 79(23), 235114 (2009).

    Google Scholar 

  85. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73(4), 045112 (2006).

    Google Scholar 

  86. S. Albrecht, L. Reining, R. Del Sole, and G. Onida: Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80(20), 4510–4513 (1998).

    CAS  Google Scholar 

  87. L.X. Benedict, E.L. Shirley, and R.B. Bohn: Optical absorption of insulators and the electron-hole interaction: An ab initio calculation. Phys. Rev. Lett. 80(20), 4514–4517 (1998).

    CAS  Google Scholar 

  88. M. Rohlfing and S.G. Louie: Electron-hole excitations in semiconductors and insulators. Phys. Rev. Lett. 81(11), 2312–2315 (1998).

    CAS  Google Scholar 

  89. F. Fuchs, C. Rödl, A. Schleife, and F. Bechstedt. Efficient O(N2) approach to solve the Bethe-Salpeter equation for excitonic bound states. Phys. Rev. B 78(8), 085103 (2008).

    Google Scholar 

  90. W.G. Schmidt, S. Glutsch, P.H. Hahn, and F. Bechstedt: Efficient O(N2) method to solve the Bethe-Salpeter equation. Phys. Rev. B 67(8), 085307 (2003).

    Google Scholar 

  91. R.de L. Kronig: On the theory of dispersion of x-rays. J. Opt. Soc. Am. 12(6), 547–556 (1926).

    CAS  Google Scholar 

  92. H.A. Kramers: Some remarks on the theory of absorption and refraction of x-rays. Nature 117, 775 (1926).

    Google Scholar 

  93. W.J. Yin, S.H. Wei, M.M. Al-Jassim, and Y. Yan: Prediction of the chemical trends of oxygen vacancy levels in binary metal oxides. Appl. Phys. Lett. 99(14), 142109 (2011).

    Google Scholar 

  94. W. Martienssen and H. Warlimont: Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, 2005).

    Google Scholar 

  95. B. Gil, A. Lusson, V. Sallet, S-A. Said-Hassani, R. Triboulet, and P. Bigenwald: Strain-fields effects and reversal of the nature of the fundamental valence band of ZnO epilayers. Jpn. J. Appl. Phys., Part 2 40(10B), L1089–L1092 (2001).

    CAS  Google Scholar 

  96. M. Oshikiri, Y. Imanaka, F. Aryasetiawan, and G. Kido: Comparison of the electron effective mass of the n-type ZnO in the wurtzite structure measured by cyclotron resonance and calculated from first-principle theory. Physica B 298(1–4), 472–476 (2001).

    CAS  Google Scholar 

  97. Y. Dou, R.G. Egdell, D.S.L Law, N.M. Harrison, and B.G. Searle: An experimental and theoretical investigation of the electronic structure of CdO. J. Phys. Condens. Matter 10(38), 8447–8458 (1998).

    CAS  Google Scholar 

  98. P.H. Jefferson, S.A. Hatfield, T.D. Veal, P.D.C King, C.F. McConville, J. Zúñiga-Pérez, and V. Muñoz-Sanjosé: Band gap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92(2), 022101 (2008).

    Google Scholar 

  99. D. Fröhlich, R. Kenklies, and R. Helbig: Band-gap assignment in SnO2 by two-photon spectroscopy. Phys. Rev. Lett. 41, 1750–1751 (1978).

    Google Scholar 

  100. K.J. Button, C.G. Fonstad, and W. Dreybrodt: Determination of the electron masses in stannic oxide by submillimeter cyclotron resonance. Phys. Rev. B 4, 4539–4542 (1971).

    Google Scholar 

  101. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono: p-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl. Phys. Lett. 93(3), 032113 (2008).

    Google Scholar 

  102. Z.M. Jarzebski: Preparation and physical properties of transparent conducting oxide films. Phys. Status Solidi A 71(1), 13–41 (1982).

    CAS  Google Scholar 

  103. R.J. Powell and G.F. Derbenwick: Vacuum ultraviolet radiation effects in SiO2. IEEE Trans. Nucl. Sci. 18(6), 99–105 (1971).

    CAS  Google Scholar 

  104. R.K. Chanana; Determination of hole effective mass in SiO2 and SiC conduction band offset using Fowler-Nordheim tunneling characteristics across metal-oxide-semiconductor structures after applying oxide field corrections. J. Appl. Phys. 109(10), 104508 (2011).

    Google Scholar 

  105. P.D.C King, T.D. Veal, A. Schleife, J. Zúñiga-Pérez, B. Martel, P.H. Jefferson, F. Fuchs, V. Muñoz-Sanjosé, F. Bechstedt, and C.F. McConville: Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasiparticle-corrected density-functional theory calculations. Phys. Rev. B 79(20), 205205 (2009).

    Google Scholar 

  106. L.F.J Piper, A. DeMasi, K.E. Smith, A. Schleife, F. Fuchs, F. Bechstedt, J. Zúñiga-Pérez, and V. Muñoz-Sanjosé: Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies and ab initio calculations. Phys. Rev. B 77(12), 125204 (2008).

    Google Scholar 

  107. A.R.H Preston, B.J. Ruck, L.F.J Piper, A. DeMasi, K.E. Smith, A. Schleife, F. Fuchs, F. Bechstedt, J. Chai, and S.M. Durbin: Band structure of ZnO from resonant x-ray emission spectroscopy. Phys. Rev. B 78(15), 155114 (2008).

    Google Scholar 

  108. A. Schleife, F. Fuchs, C. Rödl, J. Furthmüller, and F. Bechstedt: Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations. Appl. Phys. Lett. 94(1), 012104 (2009).

    Google Scholar 

  109. B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt: Band lineup between silicon and transparent conducting oxides. Appl. Phys. Lett. 97(3), 032116 (2010).

    Google Scholar 

  110. L.C. de Carvalho, A. Schleife, F. Fuchs, and F. Bechstedt: Valence-band splittings in cubic and hexagonal AlN, GaN, and InN. Appl. Phys. Lett. 97(23), 232101 (2010).

    Google Scholar 

  111. E. Kioupakis, P. Rinke, A. Schleife, F. Bechstedt, and C.G. Van de Walle: Free-carrier absorption in nitrides from first principles. Phys. Rev. B 81(24), 241201 (2010).

    Google Scholar 

  112. L.C. de Carvalho, A. Schleife, and F. Bechstedt: Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN polytypes. Phys. Rev. B 84, 195105 (2011).

    Google Scholar 

  113. A. Belabbes, L.C. de Carvalho, A. Schleife, and F. Bechstedt: Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states. Phys. Rev. B 84, 125108 (2011).

    Google Scholar 

  114. L.C. de Carvalho, A. Schleife, J. Furthmüller, and F. Bechstedt: Distribution of cations in wurtzitic InxGa1−xN and InxAl1−xN alloys: Consequences for energetics and quasiparticle electronic structures. Phys. Rev. B 85, 115121 (2012).

    Google Scholar 

  115. M.L. Bortz, R.H. French, D.J. Jones, R.V. Kasowski, and F.S. Ohuchi: Temperature dependence of the electronic structure of oxides: MgO, MgAl2O4 and Al2O3. Phys. Scr. 41(4), 537–541 (1990).

    CAS  Google Scholar 

  116. N.P. Wang, M. Rohlfing, P. Krüger, and J. Pollmann: Electronic excitations of CO adsorbed on MgO(001). Appl. Phys. A 78(2), 213–221 (2004).

    CAS  Google Scholar 

  117. R. Laskowski and N.E. Christensen: Ab initio calculation of excitons in ZnO. Phys. Rev. B 73(4), 045201 (2006).

    Google Scholar 

  118. P. Gori, M. Rakel, C. Cobet, W. Richter, N. Esser, A. Hoffmann, R. Del Sole, A. Cricenti, and O. Pulci: Optical spectra of ZnO in the far ultraviolet: First-principles calculations and ellipsometric measurements. Phys. Rev. B 81, 125207 (2010).

    Google Scholar 

  119. A. Riefer, F. Fuchs, C. Rödl, A. Schleife, F. Bechstedt, and R. Goldhahn: Interplay of excitonic effects and van Hove singularities in optical spectra: CaO and AlN polymorphs. Phys. Rev. B 84, 075218 (2011).

    Google Scholar 

Download references

Acknowledgment

We acknowledge very much close and longstanding collaborations as well as interesting scientific discussions with (alphabetical) P. Ágoston, O. Bierwagen, C. Cobet, M. Cobet, S. Durbin, F. Fuchs, J. Furthmüller, R. Goldhahn, P. D. C. King, K. Hannewald, B. Höffling, A. Hoffmann, A. Janotti, E. Kioupakis, A. Klein, S. Küfner, W. Lambrecht, C. McConville, B. K. Meyer, L. Piper, P. Rinke, A. Rodina, C.Rödl,D.Rogers,C.G.VandeWalle,J.B.Varley, T. Veal, M. R. Wagner, and S. H. Wei. The research presented here has received funding from the European Community’s Seventh Framework Programme (FP7/ 2007-2013) under Grant Agreement No. 211956, from the German Federal Government (BMBF Project Nos. 13N9669 and 03SF038D), and from the Deutsche For-schungsgemeinschaft (Project No. Be1346/20-1). Part of this work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07A27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schleife.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleife, A., Bechstedt, F. Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides. Journal of Materials Research 27, 2180–2189 (2012). https://doi.org/10.1557/jmr.2012.147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.147

Navigation