Skip to main content
Log in

A structural study of Cu–In–Se compounds by x-ray absorption fine structure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The local structures about Cu, In, and Se atoms in a series of Cu2Se–In2Se3 pseudobinary compounds have been investigated by x-ray absorption fine structure (XAFS). In K-edge XAFS and L3-edge x-ray absorption near-edge structure (XANES) suggest that CuInSe2, Cu0.9InSe1.95, Cu0.82InSe1.91, and Cu2In3Se5.5 have a nominally four-coordinated InSe4 structure, whereas CuIn3Se5 and CuIn5Se8 possess two different InSe4 structures. Cu K-edge XAFS also showed that CuIn3Se5 and CuIn5Se8 possess two different CuSe4 structures, whereas others have a CuSe4 structure. Se K-edge XANES and curve fitting analysis reveal that the Cu vacancy (VCu) gradually forms with decreasing Cu/In ratio. Moreover, the substitution of In for VCu (InCu) is observed in CuIn3Se5 and CuIn5Se8. These results were compared to the previously proposed Cu–In–Se models. We conclude that Cu0.9InSe1.95 and Cu0.82InSe1.91 have a chalcopyrite structure with VCu and that the structure of CuIn3Se5 and CuIn5Se8 is a stannite-like structure with VCu and InCu defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I
FIG. 5
FIG. 6
TABLE II
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
TABLE III
FIG. 12
FIG. 13
TABLE IV
TABLE V

Similar content being viewed by others

References

  1. J.L. Shay, B. Tell, H.M. Kasper, and L.M. Schiavone: Electronic structure of AgInSe2 and CuInSe2. Phys. Rev. B 7, 4485 (1973).

    Article  CAS  Google Scholar 

  2. R. Herberholz, V. Nadenau, U. Rühle, C. Köble, H.W. Schock, and B. Dimmler: Prospects of wide-gap chalcopyrites for thin film photovoltaic modules. Sol. Energy Mater. Sol. Cells 49, 227 (1997).

    Article  CAS  Google Scholar 

  3. W. Höring, H. Neumann, H. Sobotta, B. Schumann, and G. Kühn: The optical properties of CuInSe2 thin films. Thin Solid Films 48, 67 (1978).

    Article  Google Scholar 

  4. H.A. Weakleim and D. Redfield: Temperature dependence of the optical properties of silicon. J. Appl. Phys. 50, 1491 (1979).

    Article  Google Scholar 

  5. J.E. Jaffe and A. Zunger: Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B 29, 1882 (1984).

    Article  CAS  Google Scholar 

  6. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. 16, 235 (2008).

    Article  CAS  Google Scholar 

  7. M.A. Green, K. Emery, Y. Hshikawa, and W. Warta: Solar cell efficiency tables (version 53). Prog. Photovoltaics Res. Appl. 18, 144 (2010).

    Article  CAS  Google Scholar 

  8. D. Schmid, M. Ruckh, F. Grunwald, and H.W. Schock: Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. J. Appl. Phys. 73, 2902 (1993).

    Article  CAS  Google Scholar 

  9. L.S. Palatnik and E.J. Rogacheva: Phase diagrams and structure of some semiconductor A2ICVI-B2IIICVI alloys. Sov. Phys. Dokl. 12, 503 (1967).

    Google Scholar 

  10. W. Hönle, G. Kühn, and U.C. Boehnke: Crystal structures of two quenched Cu-In-Se phases. Cryst. Res. Technol. 23, 1347 (1988).

    Article  Google Scholar 

  11. B.H. Tseng and C.A. Wert: Defect-ordered phases in a multiphase Cu-In-Se material. J. Appl. Phys. 65, 2254 (1989).

    Article  CAS  Google Scholar 

  12. K.S. Knight: The crystal structures of CuInSe2 and CuInTe2. Mater. Res. Bull. 27, 161 (1992).

    Article  CAS  Google Scholar 

  13. H.Z. Xiao, L.C. Yang, and A. Rockett: Structural, optical, and electrical properties of epitaxial chalcopyrite CuIn3Se5 films. J. Appl. Phys. 76, 1503 (1994).

    Article  CAS  Google Scholar 

  14. S. Nomura and S. Endo: Preparation and structural analysis of ordered vacancy compounds in the Cu-In-Se system. MRS Jpn. 20, 755 (1996).

    Google Scholar 

  15. T. Hanada, A. Yamana, Y. Nakamura, O. Nittono, and T. Wada: Crystal structure of CuIn3Se5 semiconductor studied using electron and X-ray diffractions. Jpn. J. Appl. Phys. 36, L1494 (1997).

    Article  CAS  Google Scholar 

  16. J.M. Merino, S. Mahanty, M. Leon, R. Diaz, F. Rueda, and J.L.M.d. Vidales: Structural characterization of CuIn2Se3.5, CuIn3Se5 and CuIn5Se8. Thin Solid Films 361/362, 70 (2000).

    Article  Google Scholar 

  17. C.H. Chang, S.H. Wei, J.W. Johnson, S.B. Zhang, N. Leyarovska, G. Bunker, and T.J. Anderson: Local structure of CuIn3Se5: X-ray absorption fine structure study and first-principles calculations. Phys. Rev. B 68, 054108 (2003).

    Article  CAS  Google Scholar 

  18. W. Paszkowicz, R. Lewandowska, and R. Bacewicz: Rietveld refinement for CuInSe2 and CuIn3Se5. J. Alloy. Comp. 362, 241 (2004).

    Article  CAS  Google Scholar 

  19. U.C. Boehnke and G. Kühn: Phase relations in the ternary system Cu-In-Se. J. Mater. Sci. 22, 1635 (1987).

    Article  CAS  Google Scholar 

  20. B. Tell, J.L. Shay, and H.M. Kasper: Room-temperature electrical properties of Te I-III-VI2 semiconductors. J. Appl. Phys. 43, 2469 (1972).

    Article  CAS  Google Scholar 

  21. J. Parkes, R.D. Thomlinson, and M.J. Hampshiere: Electrical properties of CuInSe2 single crystals. Solid State Electron. 16, 773 (1973).

    Article  CAS  Google Scholar 

  22. P. Migliorato, J.L. Shay, H.M. Kasper, and S. Wagner: Analysis of the electrical and luminescent properties of CuInSe2. J. Appl. Phys. 46, 1777 (1975).

    Article  CAS  Google Scholar 

  23. R. Noufi, R. Axton, C. Herrington, and S.K. Deb: Electronic properties versus composition of thin films of CuInSe2. Appl. Phys. Lett. 45, 668 (1984).

    Article  CAS  Google Scholar 

  24. S.B. Zhang, S.H. Wei, and A. Zunger: Stabilization of ternary compounds via ordered arrays of defect pairs. Phys. Rev. Lett. 78, 4059 (1997).

    Article  CAS  Google Scholar 

  25. S.B. Zhang, S.H. Wei, and A. Zunger: Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642 (1998).

    Article  CAS  Google Scholar 

  26. T. Maeda and T. Wada: Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds. Phys. Status Solidi C 6, 1312 (2009).

    Article  CAS  Google Scholar 

  27. N. Kohara, S. Nishiawaki, T. Negami, and T. Wada: Physical vapor deposition of hexagonal and tetragonal CuIn5Se8 thin films. Jpn. J. Appl. Phys. 39, 6316 (2000).

    Article  CAS  Google Scholar 

  28. R. Bacewicz, A. Wolska, K. Lawniczak-Jablonska, and P. Sainctavit: X-ray absorption near-edge structure of CuInSe2 crystals. J. Phys. Condens. Matter 12, 7371 (2000).

    Article  CAS  Google Scholar 

  29. A. Wolska, R. Bacewicz, J. Fillipowicz, and K. Attenkofer: X-ray absorption near-edge structure of selenium in the Cu-In-Se system. J. Phys. Condens. Matter 13, 4457 (2001).

    Article  CAS  Google Scholar 

  30. J.M. Merino, S. Díaz-Moreno, G. Subías, and M. Leön: A comparative study of Cu-Se and In-Se bond length distributions in CuInSe2 with related In-rich compounds. Thin Solid Films 480/481, 295 (2005).

    Article  CAS  Google Scholar 

  31. R. Lewandowska, R. Bacewicz, and J. Fillipowicz: EXAFS study of In-rich phases in Cu-In-Se system. Cryst. Res. Technol. 37, 235 (2002).

    Article  CAS  Google Scholar 

  32. T. Wada, H. Kinoshita, and S. Kawata: Preparation of chalcopyrite-type CuInSe2 by non-heating process. Thin Solid Films 431/432, 11 (2003).

    Article  CAS  Google Scholar 

  33. A.L. Ankudinov, B. Ravel, J.J. Rehr, and S.D. Conradson: Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565 (1998).

    Article  CAS  Google Scholar 

  34. N. Kosugi, Y. Tokura, H. Takagi, and S. Uchida: Cu K-edge x-ray absorption near-edge structure and electronic structure of Nd2-xCe xCuO4-y and La2-xSr xCuO4. Phys. Rev. B 41, 131 (1990).

    Article  CAS  Google Scholar 

  35. T. Yamamoto, T. Tanaka, S. Suzuki, R. Kuma, K. Teramura, Y. Kou, T. Funabiki, and S. Yoshida: NO reduction with CO in the presence of O2 over Cu/Al2O3 (3)—Structural analysis of active species by means of XAFS and UV/VIS/NIR spectroscopy. Top. Catal. 18, 113 (2002).

    Article  CAS  Google Scholar 

  36. M. Sano, S. Komorita, and H. Yamatera: XANES spectra of copper(II) complexes: Correlation of the intensity of the 1s→3d transition and the shape of the complexes. Inorg. Chem. 31, 459 (1992).

    Article  CAS  Google Scholar 

  37. H.W. Spiess, U. Haeberln, G. Brandt, A. Räuber, and J. Schneider: Nuclear magnetic resonance in IB-III-VI2 semiconductors. Phys. Status Solidi B 62, 183 (1974).

    Article  CAS  Google Scholar 

  38. G. Zahn and P. Paufler: Identification of predominant point defects in nonstoichiometric CuInSe2 by x-ray powder diffraction. Cryst. Res. Technol. 23, 499 (1988).

    Article  CAS  Google Scholar 

  39. J.M. Merino, J.L. Martin de Vidales, S. Mahanty, R. Diaz, F. Rueda, and M. León: Composition effects on the crystal structure of CuInSe2. J. Appl. Phys. 80, 5610 (1996).

    Article  CAS  Google Scholar 

  40. F. Frolow, L. Chernyak, D. Cahen, H. Hallak, J. Gabboun, A. Kvick, and H. Graafama: Ternary and multinary compounds. Inst. Phys. Conf. Ser. 152, 67 (1998).

    CAS  Google Scholar 

  41. J. T-Thienprasert, J. Nukeaw, A. Sungthong, S. Porntheeraphat, S. Singkarat, D. Onkaw, S. Rujirawat, and S. Limpijumnong: Local structure of indium oxynitride from x-ray absorption spectroscopy. Appl. Phys. Lett. 93, 051903 (2008).

    Article  CAS  Google Scholar 

  42. L. Gastaldi, M.G. Simeone, and S. Viticoli: Structure refinement of ZnIn2Se4. J. Solid State Chem. 66, 251 (1987).

    Article  CAS  Google Scholar 

  43. R.E. March and W.R. Robinson: On the structure of ZnIn2Se4. J. Solid State Chem. 73, 591 (1988).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mr. Junya Kubo, Masaki Fukada, and Ms. Erika Tokumoto for their help in the XAFS measurement. We also thank Dr. Paul Fons of National Institute for Advanced Industrial Science & Technology for his critical reading of the manuscript. This work was in part supported by the Incorporated Administrative Agency New Energy and Industrial Technology Development Organization under the Ministry of Economy, Trade and Industry. This work was also supported in part by a grant from the HighTech Research Center Program for private universities from the Japan Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Yamazoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazoe, S., Kou, H. & Wada, T. A structural study of Cu–In–Se compounds by x-ray absorption fine structure. Journal of Materials Research 26, 1504–1516 (2011). https://doi.org/10.1557/jmr.2011.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.63

Navigation