Skip to main content
Log in

Fracture modes in micropillar compression of brittle crystals

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This article describes cracking during microcompression of Si, InAs, MgO, and MgAl2O4 crystals and compares this with previous observations on Si and GaAs micropillars. The most common mode of cracking was through-thickness axial splitting, the crack growing downward from intersecting slip bands in pillars above a critical size. The splitting behavior observed in all of these materials was quantitatively consistent with a previous analysis, despite the differences in properties and slip geometry between the different materials. Cracking above the slip bands also occurred either in the side or in the top surface of some pillars. The driving forces for these modes of cracking are described and compared with observations. However, only through-thickness axial splitting was observed to give complete failure of the pillar; it is, therefore, considered to be the most important in determining the brittle-to-ductile transitions that have been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE I.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
TABLE II.

Similar content being viewed by others

References

  1. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).

    Article  CAS  Google Scholar 

  2. J.R. Greer and W.D. Nix: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A 80, 1625 (2005).

    Article  CAS  Google Scholar 

  3. H. Bei, S. Shim, E.P. George, M. Miller, E. Herbert, and G. Pharr: Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr. Mater. 57, 397 (2007).

    Article  CAS  Google Scholar 

  4. F. Östlund, P.R. Howie, R. Ghisleni, S. Korte, K. Leifer, W.J. Clegg, and J. Michler: Ductile-brittle transition in micropillar compression of GaAs at room temperature. Philos. Mag. 91, 1190 (2011).

    Article  Google Scholar 

  5. F. Östlund, K. Rzepiejewska-Malyska, K. Leifer, L.M. Hale, Y. Tang, R. Ballarini, W.W. Gerberich, and J. Michler: Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439 (2009).

    Article  Google Scholar 

  6. J. Michler, K. Wasmer, S. Meier, F. Östlund, and K. Leifer: Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl. Phys. Lett. 90, 043123 (2007).

    Article  Google Scholar 

  7. S. Korte and W.J. Clegg: Discussion of the dependence of the effect of size on the yield stress in hard materials studied by microcompression of MgO. Philos. Mag. 91, 1150 (2010).

    Article  Google Scholar 

  8. S.J. Lloyd, J.M. Molina-Aldareguia, and W.J. Clegg: Deformation under nanoindents in sapphire, spinel and magnesia examined using transmission electron microscopy. Philos. Mag. A. 82, 1963 (2002).

    Article  CAS  Google Scholar 

  9. A. Kelly, G.W. Groves, and P. Kidd: Crystallography and Crystal Defects (Wiley, Chichester, 2000).

    Google Scholar 

  10. S. Bouvier and A. Needleman: Effect of the number and orientation of active slip systems on plane strain single crystal indentation. Modell. Simul. Mater. Sci. Eng. 14, 1105 (2006).

    Article  CAS  Google Scholar 

  11. J.J. Gilman: Chemistry and Physics of Mechanical Hardness (Wiley, New York, 2009).

    Book  Google Scholar 

  12. S. Korte and W. Clegg: Micropillar compression of ceramics at elevated temperatures. Scr. Mater. 60, 807 (2009).

    Article  CAS  Google Scholar 

  13. B. Moser, K. Wasmer, L. Barbieri, and J. Michler: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22, 1004 (2007).

    Article  CAS  Google Scholar 

  14. J. Deneen Nowak, W.M. Mook, A.M. Minor, W.W. Gerberich, and C.B. Carter: Fracturing a nanoparticle. Philos. Mag. 87, 29 (2007).

    Article  Google Scholar 

  15. J. Deneen, W.M. Mook, A.M. Minor, W.W. Gerberich, and C.B. Carter: In situ deformation of silicon nanospheres. J. Mater. Sci. 41, 4477 (2006).

    Article  CAS  Google Scholar 

  16. W.W. Gerberich, W.M. Mook, C.R. Perrey, C.B. Carter, M.I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P.H. McMurry, and S.L. Girshick: Superhard silicon nanospheres. J. Mech. Phys. Solids. 51, 979 (2003).

    Article  CAS  Google Scholar 

  17. A.A. Griffith: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A. 221, 163 (1921).

    Google Scholar 

  18. C. Gurney and J. Hunt: Quasi-static crack propagation. Proc. Roy. Soc. A. 299, 508 (1967).

    CAS  Google Scholar 

  19. K. Kendall: Complexities of compression failure. Proc. Roy. Soc. A. 361, 245 (1978).

    Google Scholar 

  20. K.E. Puttick: The mechanics of indentation fracture in poly (methyl methacrylate). J. Phys. D. 11, 595 (1978).

    Article  CAS  Google Scholar 

  21. A.R. Beaber, J.D. Nowak, O. Ugurlu, W.M. Mook, S.L. Girshick, R. Ballarini, and W.W. Gerberich: Smaller is tougher. Philos. Mag. 91, 1179 (2011).

    Article  CAS  Google Scholar 

  22. W.W. Gerberich, J. Michler, W.M. Mook, R. Ghisleni, F. Östlund, D.D. Stauffer, and R. Ballarini: Scale effects for strength, ductility, and toughness in “brittle” materials. J. Mater. Res. 24, 899 (2009).

    Article  Google Scholar 

  23. H. Huang and W.W. Gerberich: Crack-tip dislocation emission arrangements for equilibrium–II. Comparisons to analytical and computer simulation models. Acta Metall. Mater. 40, 2873 (1992).

    Article  CAS  Google Scholar 

  24. A.H. Cottrell: Theory of brittle fracture in steel and similar metals. Trans. Metall. Soc. AIME. 212, 192 (1958).

    CAS  Google Scholar 

  25. J.E. Gordon: The New Science of Strong Materials (Penguin Books, Harlow, 1968).

    Google Scholar 

  26. M.F. Ashby and C.G. Sammis: The damage mechanics of brittle solids in compression. Pure Appl. Geophys. 133, 489 (1990).

    Article  Google Scholar 

  27. B.R. Lawn and T.R. Wilshaw: Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1975).

    Google Scholar 

  28. F. Ericson, S. Johansson, and J-Å. Schweitz: Hardness and fracture toughness of semiconducting materials studied by indentation and erosion techniques. Mater. Sci. Eng., A. 105, 131 (1988).

    Article  Google Scholar 

  29. S. Adachi: Physical Properties of III-V Semiconductor Compounds (Wiley-VCH, New York, 1992).

    Book  Google Scholar 

  30. F. Ericson and J-Å. Schweitz: Micromechanical fracture strength of silicon. J. Appl. Phys. 68, 5840 (2009).

    Article  Google Scholar 

  31. J.J. Wortman and R.A. Evans: Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).

    Article  CAS  Google Scholar 

  32. R.W. Rice, C.C. Wu, and K.R. McKinney: Fracture and fracture toughness of stoichiometric MgAl2O4 crystals at room temperature. J. Mater. Sci. 31, 1353 (1996).

    Article  CAS  Google Scholar 

  33. A.K. Kushwaha: Vibrational and elastic properties of aluminate spinel MgAl2O4. Physica B 405, 2795 (2010).

    Article  CAS  Google Scholar 

  34. C.L. Conner and K.T. Faber: Segregant-enhanced fracture in magnesium oxide. J. Mater. Sci. 25, 2737 (1990).

    Article  CAS  Google Scholar 

  35. D-H. Chung: Elastic moduli of single crystal and polycrystalline MgO. Philos. Mag. 8, 833 (1963).

    Article  CAS  Google Scholar 

  36. K. Hjort, J. Soderkvist, and J-Å. Schweitz: Gallium arsenide as a mechanical material. J. Micromech. Microeng. 4, 1 (1994).

    Article  CAS  Google Scholar 

  37. J.L. Beuth: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29, 1657 (1992).

    Article  Google Scholar 

  38. T. Çağin, J. Che, M.N. Gardos, A. Fijany, and W.A. Goddard: Simulation and experiments on friction and wear of diamond: A material for MEMS and NEMS application. Nanotechnology 10, 278 (1999).

    Article  Google Scholar 

  39. F.P. Bowden and C.A. Brookes: Frictional anisotropy in nonmetallic crystals. Proc. Roy. Soc. A 295, 244 (1966).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge J. Michler, R. Ghisleni, and W. W. Gerberich for helpful discussions. This work was supported by the Engineering and Physical Sciences Research Council [EP/F033605/1] (PRH) and [EP/C518012/1] (SK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. Howie.

Appendix A

Appendix A

Kendall describes, in terms of global energy changes, the formation of splitting cracks in columns compressed using a punch with a width smaller than that of the column itself.19 Each half-column is then loaded asymmetrically and bends, allowing the compressive force to move downward and do work. In the absence of frictional effects, this driving force goes to zero as the punch width approaches the pillar width. In micropillar compression, where the punch is typically much larger than the pillar top, one might expect no effect. However, an effect arises because the pillar tapers, so that the centroid of each half pillar is closer to the axis at the top of the pillar than it is at the bottom. Kendall’s calculation has been adapted to estimate the magnitude of this effect on the driving force due to through-thickness axial splitting.

Consider the pillar shown in Fig. A1, the centroid of each semicylindrical slice is at a distance y′ from the center of the pillar, where

$$y' = {2r \over 3 \pi},$$
((A1))
FIG. A1.
figure 10

Schematic of a tapered pillar containing an axial split, with definition of dimensions used in this appendix.

r is the radius of the pillar at some depth in the pillar and depends on the vertical position within the pillar and on the taper angle, α

$$r = r_\text{top} + z \tan \alpha,$$
((A2))

where rtop is the radius of the top of the pillar and z is the distance from the top of the pillar. The second moment of area with respect to the centroid axis is

$$I_{x, \text{C}} = \left( {\pi \over 8} - {8 \over 9 \pi} \right) r^4 = \left( {\pi \over 8} - {8 \over 9 \pi} \right) \left( r_\text{top} + z \tan \alpha \right)^4 .$$
((A3))

The bending moment in each slice through the pillar is produced by the difference in centroid position

$$M = {F \over 2} \,\cdot\,{4 \over 3 \pi} \left( r - r_\text{top} \right) = {2 \sigma r_\text{top}^2 z \tan \alpha \over 3},$$
((A4))

where

$$F = \sigma \pi r_\text{top}^2.$$
((A5))

The bending strain energy in the two beams taken together is given by

((A6))

so that the contribution to the driving force from the taper is

((A7))

where d is taken to be equal to 2rtop. Expressing the stress intensity factor of the crack derived for uniaxial splitting, Equation (2), in terms of a crack driving force gives

$${\text{d} U_\text{E} \over \text{d} c} = Gd = {K_\text{I}^2 \over E} d = {\beta^2 k_s^2 \sigma^2 d^2 \over E}$$
((A8))

The relative value of the two driving forces is therefore given by

((A9))

Taking typical values for silicon micropillars of β = 1.1, S = 0.47 and φ = 54.7° and taking c = z ≈ 0.7 d at the onset of splitting gives\({{G_{{\rm{taper}}} } \over {G_{{\rm{split}}} }} = 0.06 - 0.22\) for α between 2 and 4°. The additional driving force due to the taper is therefore considered to be a secondary effect, at least where crack nucleation is concerned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howie, P.R., Korte, S. & Clegg, W.J. Fracture modes in micropillar compression of brittle crystals. Journal of Materials Research 27, 141–151 (2012). https://doi.org/10.1557/jmr.2011.256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.256

Navigation