Skip to main content
Log in

Oxide thermoelectrics: The challenges, progress, and outlook

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

REFERENCES

  1. T.M. Tritt, M.A. Subramanian, H. Bottner, T. Caillat, G. Chen, R. Funahashi, X. Ji, M. Kanatzidis, K. Koumoto, G.S. Nolas, J. Poon, A.M. Rao, I. Terasaki, R. Venkatasubramanian, and J. Yang: Special issue on harvesting energy through thermoelectrics: Power generation and cooling. MRS Bull. 31, (2006).

  2. G.S. Nolas, J. Sharp, and H.J. Goldsmid: Thermoelectrics Basic Principles and New Materials Developments (Springer-Verlag, Berlin Heidelberg, 2001).

    Book  Google Scholar 

  3. G.A. Slack: New materials and performance limits for thermoelectric cooling, in CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, 1995), pp. 407–440.

    Google Scholar 

  4. A.F. Ioffe: Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd., London, 1957).

    Google Scholar 

  5. G.D. Mahan: Figure-of-merit for thermoelectrics. J. Appl. Phys. 65, 1578 (1989).

    Article  Google Scholar 

  6. H.J. Goldsmid: Electronic Refrigeration (Pion Limited, London, 1986).

    Google Scholar 

  7. I. Terasaki, Y. Sasago, and K. Uchinokura: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685 (1997).

    Article  CAS  Google Scholar 

  8. M. Ito, T. Nagira, D. Furumoto, S. Katsuyama, and H. Nagai: Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method. Scr. Mater. 48, 403 (2003).

    Article  CAS  Google Scholar 

  9. K. Fujita, T. Mochida, and K. Nakamura: High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn. J. Appl. Phys. 40, 4644 (2001).

    Article  CAS  Google Scholar 

  10. Y. Ando, N. Miyamoto, K. Segawa, T. Kawata, and I. Terasaki: Specific-heat evidence for strong electron correlation in the thermoelectric materials (Na,Ca)Co2O4. Phys. Rev. B 60, 10580 (1999).

    Article  CAS  Google Scholar 

  11. Y. Wang, N.S. Rogado, R.J. Cava, and N.P. Ong: Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 423, 425 (2003).

    Article  CAS  Google Scholar 

  12. W. Koshibae, K. Tsutsui, and S. Maekawa: Thermopower in cobalt oxides. Phys. Rev. B 62, 6869 (2000).

    Article  CAS  Google Scholar 

  13. D.J. Singh and D. Kasinathan: Thermoelectric properties of NaxCoO2 and prospects for other oxide thermoelectrics. J. Electron. Mater. 36, 736 (2007).

    Article  CAS  Google Scholar 

  14. K. Koumoto, Y.F. Wang, R. Zhang, A. Kosuga, and R. Funahashi: Oxide thermoelectric materials: A nanostructuring approach. Annu. Rev. Mater. Res. 40, 363 (2010).

    Article  CAS  Google Scholar 

  15. M. Ohtaki: Oxide thermoelectric materials for heat-to-electricity direct energy conversion. Newslett. Kyushu Univ. G-COE program Novel Carbon Resources Sciences, 3, 8 (2010). http://ncrs.cm.kyushu-u.ac.jp/ncrs2/379.html.

    Google Scholar 

  16. H. Ohta, K. Sugiura, and K. Koumoto: Recent progress in oxide thermoelectric materials p-type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem. 47, 8429 (2008).

    Article  CAS  Google Scholar 

  17. C.J. Vineis, A. Shakouri, A. Marjumdar, and M.G. Kanatzidis: Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22, 3970 (2010).

    Article  CAS  Google Scholar 

  18. M.G. Kanatzidis: Nanostructured thermoelectric: The new paradigm? Chem. Mater. 22, 648 (2010).

    Article  CAS  Google Scholar 

  19. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009).

    Article  CAS  Google Scholar 

  20. G. Mahan: Benedicks effect: Nonlocal electron transport in metals. Phys. Rev. B 43, 3945 (1991).

    Article  CAS  Google Scholar 

  21. L.I. Anatychuk and L.P. Bulat: Thermoelectric phenomena under large temperature gradients, in CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, 2005), pp. 3–8.

    Google Scholar 

  22. P. Vaqueiro and A.V. Powell: Recent developments in nanostructured materials for high-performance thermoelectrics. J. Mater. Chem. 20, 9577 (2010).

    Article  CAS  Google Scholar 

  23. S. Li, R. Funahashi, I. Matsubara, K. Ueno, and H. Yamada: High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem. 9, 1659 (1999).

    Article  CAS  Google Scholar 

  24. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka: Oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000).

    Article  CAS  Google Scholar 

  25. M. Shikano and R. Funahashi: Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003).

    Article  CAS  Google Scholar 

  26. Y. Zhou, I. Matsubara, S. Horii, T. Takeuchi, R. Funahashi, M. Shikano, J. Shimoyama, K. Kishio, W. Shin, N. Izu, and N. Murayama: Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramic. J. Appl. Phys. 93, 2653 (2003).

    Article  CAS  Google Scholar 

  27. D. Wang, L. Cheng, Q. Yao, and J. Li: High-temperature thermoelectrics properties of Ca3Co4O9+δ with Eu substitution. Solid State Commun. 129, 615 (2004).

    Article  CAS  Google Scholar 

  28. N.V. Nong, C.-J. Liu, and M. Ohtaki: Improvement on the high temperature thermoelectric performance of Ga-doped misfit-layered Ca3Co4-xGaxO9+δ. J. Alloy. Comp. 491, 53 (2010).

    Article  CAS  Google Scholar 

  29. R. Funahashi, I. Matsubara, and S. Sodeoka: Thermoelectric properties of Bi2Sr2Co2Ox polycrystalline materials. Appl. Phys. Lett. 76, 2385 (2000).

    Article  CAS  Google Scholar 

  30. R. Funahashi and M. Shikano: Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit. Appl. Phys. Lett. 81, 1459 (2002).

    Article  CAS  Google Scholar 

  31. R. Funahashi and I. Matsubara: Thermoelectric properties of Pb- and Ca-doped (Bi2Sr2O4)xCo2 whiskers. Appl. Phys. Lett. 79, 362 (2007).

    Article  CAS  Google Scholar 

  32. J.J. Shen, X.X. Liu, T.J. Zhu, and X.B. Zhao: Improved thermoelectric properties of La-doped Bi2Sr2Co2O9 layered misfit oxides. J. Electron. Mater. 44, 1889 (2009).

    CAS  Google Scholar 

  33. K. Koumoto, I. Terasaki, and R. Funahashi: Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206 (2006).

    Article  CAS  Google Scholar 

  34. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto: High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97, 034106 (2005).

    Article  CAS  Google Scholar 

  35. S. Ohta, H. Ohta, and K. Koumoto: Grain size dependence of thermoelectric performance of Nb-doped SrTiO3 polycrystal. J. Ceram. Soc. Jpn. 114, 105 (2006).

    Google Scholar 

  36. Y. Cui, J. He, G. Amow, and H. Kleinke: Thermoelectric properties of n-type double substituted SrTiO3 bulk materials. Dalton Trans. 39, 1031 (2010).

    Article  CAS  Google Scholar 

  37. T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura: Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0<∼ x<∼0.1). Phys. Rev. B 63, 113104 (2001).

    Article  CAS  Google Scholar 

  38. A. Kosuga, Y. Isse, Y. Wang, K. Koumoto, and R. Funahashi: High-temperature thermoelectric properties of Ca0.9-xSrxYb0.1MnO3-δ (0 ≤ x ≤ 0.2). J. Appl. Phys. 105, 093717 (2009).

    Article  CAS  Google Scholar 

  39. Y. Wang, Y. Sui, and W. Su: High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R=La, Pr, … Yb). J. Appl. Phys. 104, 093703 (2008).

    Article  CAS  Google Scholar 

  40. L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, and R. Robert: CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077 (2008).

    Article  CAS  Google Scholar 

  41. X.Y. Huang, Y. Miyazaki, and T. Kajitani: High temperature thermoelectric properties of Ca1-xBixMn1-yVyO3-δ(0≤x=y≤0.08). Solid State Commun. 145, 132 (2008).

    Article  CAS  Google Scholar 

  42. K. Sakai, M. Karppinen, J.M. Chen, R.S. Liu, S. Sugihara, and H. Yamauchi: Pb-for-Bi substitution for enhancing thermoelectric characteristics of [(Bi, Pb)2Ba2O4±ω]0.5CoO2. Appl. Phys. Lett. 88, 232102 (2006).

    Article  CAS  Google Scholar 

  43. W. Kobayashi, S. Hébert, D. Pelloquin, O. Pérez, and A. Maignan: Enhanced thermoelectric properties in a layered rhodium oxide with a trigonal symmetry. Phys. Rev. B 76, 245102 (2007).

    Article  CAS  Google Scholar 

  44. J. Androulakis, P. Migiakis, and J. Giapintzakis: La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide. Appl. Phys. Lett. 84, 1099 (2004).

    Article  CAS  Google Scholar 

  45. W.J. Weber, C.W. Griffin, and J.L. Bates: Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70, 265 (1987).

    Article  CAS  Google Scholar 

  46. H. Kuriyama, M. Nohara, T. Sasagawa, K. Takubo, T. Mizokawa, K. Kimura, and H. Takagi: High-temperature thermoelectric properties of delafossite oxide CuRh1-xMgxO2, Proceedings of the 25th International Conference on Thermoelectrics, Vienna, Austria, 97, (2007).

  47. E. Guilmeau, D. Bérardan, C.H. Simon, A. Gaignan, B. Raveau, D. Ovono Ovono, and F. Delorme: Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at In-site. J. Appl. Phys. 106, 053715 (2009).

    Article  CAS  Google Scholar 

  48. Y.F. Wang, K.H. Lee, H. Ohta, and K. Koumoto: Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1, 2) ceramics. J. Appl. Phys. 105, 103701 (2009).

    Article  CAS  Google Scholar 

  49. Y.F. Wang, K.H. Lee, H. Ohta, and K. Koumoto: Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n (n= 1,2) ceramics. Ceram. Int. 34, 849 (2008).

    Article  CAS  Google Scholar 

  50. K.H. Lee, Y.F. Wang, H. Hyuga, H. Kita, H. Ohta, and K. Koumoto: Enhancement of thermoelectric performance in rare earth-doped Sr3Ti2O7 by symmetry restoration of TiO6 octahedra. J. Electroceram. 24, 76 (2010).

    Article  CAS  Google Scholar 

  51. W. Shin and N. Murayama: High performance p-type thermoelectric oxide based on NiO. Mater. Lett. 45, 302 (2000).

    Article  CAS  Google Scholar 

  52. R. Ishikawa, Y. Ono, Y. Miyazaki, and T. Kajitani: Low-temperature synthesis and electric properties of new layered cobaltite, SrxCoO2. Jpn. J. Appl. Phys. 41(Part 2), L337 (2002).

    Article  CAS  Google Scholar 

  53. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai: High-temperature thermoelectric properties of (Zn1−xAlx)O. J. Appl. Phys. 79, 1816 (1996).

    Article  CAS  Google Scholar 

  54. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai: Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J. Mater. Chem. 7, 85 (1997).

    Article  CAS  Google Scholar 

  55. S. Katsuyama, Y. Takagi, M. Ito, K. Majima, H. Nagai, H. Sakai, K. Yoshimura, and K. Kosuge: Thermoelectric properties of (Zn1-yMgy)1-xAlxO ceramics prepared by the polymerized complex method. J. Appl. Phys. 92, 1391 (2002).

    Article  CAS  Google Scholar 

  56. M. Ohtaki, K. Araki, and K. Yamamoto: High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 38, 1234 (2009).

    Article  CAS  Google Scholar 

  57. H. Ohta, W.S. Seo, and K. Koumoto: Thermoelectric properties of homologous compounds in the ZnO-In2O3 system. J. Am. Ceram. Soc. 79, 2193 (1996).

    Article  CAS  Google Scholar 

  58. R. Koc and H.U. Anderson: Electrical conductivity and Seebeck coefficient of (La, Ca)(Cr, Co)O3. J. Mater. Sci. 27, 5477 (1992).

    Article  CAS  Google Scholar 

  59. C. Wood and D. Emin: Conduction mechanism in boron carbide. Phys. Rev. B 29, 4582 (1984).

    Article  CAS  Google Scholar 

  60. H. Ohta, A. Mizutani, K. Sugiura, M. Hirano, H. Hosono, and K. Koumoto: Surface modification of glass substrate for oxide heteroepitaxy: Pastable three-dimensionally oriented layered oxide thin film. Adv. Mater. 18, 1649 (2006).

    Article  CAS  Google Scholar 

  61. K. Sugiura, H. Ohta, K. Nomura, M. Hirano, H. Hosono, and K. Koumoto: High electrical conductivity of layered cobalt oxide Ca3Co4O9 epitaxial films grown by topotactic ion-exchange method. Appl. Phys. Lett. 89, 032111 (2006).

    Article  CAS  Google Scholar 

  62. K. Sugiura, H. Ohta, K. Nomura, T. Saito, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto: Thermoelectric properties of the layer cobaltite Ca3Co4O9 epitaxial filmsfabricated by topotactic ion-exchange method. Mater. Trans. 48, 2104 (2007).

    Article  CAS  Google Scholar 

  63. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto: Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 87, 092108 (2005).

    Article  CAS  Google Scholar 

  64. D. Kurita, S. Ohta, K. Sugiura, H. Ohta, and K. Koumoto: Carrier generation and transport properties of heavily Nb-doped anatase TiO2 epitaxial films at high temperatures. J. Appl. Phys. 100, 096105 (2006).

    Article  CAS  Google Scholar 

  65. K.H. Lee, A. Ishizaki, S.W. Kim, H. Ohta, and K. Koumoto: Preparation and thermoelectric properties of heavily Nb-doped SrO(SrTiO3)1 epitaxial films. J. Appl. Phys. 102, 033702 (2007).

    Article  CAS  Google Scholar 

  66. H. Ohta, K. Nomura, M. Orita, M. Hirano, K. Ueda, T. Suzuki, Y. Ikuhara, and H. Hosono: Single-crystalline films of InGaO3(ZnO)m (m=integer) homologous phase grown by reactive solid-phase epitaxy. Adv. Funct. Mater. 13, 139 (2003).

    Article  CAS  Google Scholar 

  67. J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, and D.S. Beers: Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300°K. J. Appl. Phys. 35, 2899 (1964).

    Article  CAS  Google Scholar 

  68. S. Ishiwata, I. Terasaki, Y. Kusano, and M. Takano: Transport properties of misfit-layered cobalt oxide [Sr2O2-δ]0.53CoO2. J. Phys. Soc. Jpn. 75, 104716 (2006).

    Article  CAS  Google Scholar 

  69. K. Kato, M. Yamamoto, S. Ohta, H. Muta, K. Kurosaki, S. Yamanaka, H. Iwasaki, H. Ohta, and K. Koumoto: The effect of Eu substitution on thermoelectric properties of SrTi0.8Nb0.2O3. J. Appl. Phys. 102, 116107 (2007).

    Article  CAS  Google Scholar 

  70. H. Muta, A. Ieda, K. Kurosaki, and S. Yamanaka: Substitution effect on the thermoelectric properties of alkaline earth titanate. Mater. Lett. 58, 3868 (2004).

    Article  CAS  Google Scholar 

  71. M. Yamamoto, H. Ohta, and K. Koumoto: Thermoelectric phase diagram in a CaTiO3–SrTiO3–BaTiO3 system. Appl. Phys. Lett. 90, 072101 (2007).

    Article  CAS  Google Scholar 

  72. H. Ohta, S.W. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto: Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129 (2007).

    Article  CAS  Google Scholar 

  73. Y. Mune, H. Ohta, K. Koumoto, T. Mizoguchi, and Y. Ikuhara: Enhanced Seebeck coefficient of quantum-confined electrons in SrTiO3/SrTi0.8Nb0.2O3 superlattices. Appl. Phys. Lett. 91, 192105 (2007).

    Article  CAS  Google Scholar 

  74. K. H. Lee, Y. Mune, H. Ohta, and K. Koumoto: Thermal stability of giant thermoelectric Seebeck coefficient for SrTiO3/SrTi0.8Nb0.2O3 superlattices at 900 K. Appl. Phys. Express. 1, 015007 (2008).

    Article  CAS  Google Scholar 

  75. N. Daude, C. Gout, and C. Jouanin: Electronic band structure of titanium dioxide. Phys. Rev. B 15, 3229 (1977).

    Article  CAS  Google Scholar 

  76. H. Ohta, R. Huang, and Y. Ikuhara: Large enhancement of the thermoelectrics Seebeck coefficient for amorphous oxide semiconductor superlattices with extremely thin conductive layers. Phys. Status Solidi RRL 2, 105 (2008).

    Article  CAS  Google Scholar 

  77. L.D. Hicks and M.S. Dresselhaus: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  78. By low dimensional, we mean that the system size in one or more directions is comparable with the wavelength or the mean free path of a quantum particle or an excitation.

  79. L.D. Hicks, T.C. Harman, X. Sun, and M.S. Dresselhaus: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53, 10493 (1996).

    Article  Google Scholar 

  80. J.P. Heremans: Low-dimensional thermoelectricity. Acta Physiol. Pol. 108, 609 (2005).

    Article  CAS  Google Scholar 

  81. P. Pichanusakorn and P. Bandaru: Nanostructured thermoelectrics. Mater. Sci. Eng., R 67, 19 (2010).

    Article  Google Scholar 

  82. We hereafter use the generic term “nanostructured material” to represent the low-dimensional systems and the nanocomposites in view of that classical and quantum-size effects in these systems are basically the same.

  83. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Marjumdar, and P. Yang: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).

    Article  CAS  Google Scholar 

  84. A.I. Bouake, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard III, and J.R. Heath: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).

    Article  CAS  Google Scholar 

  85. R. Yang and G. Chen: Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 69, 195316 (2004).

    Article  CAS  Google Scholar 

  86. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna: New direction for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).

    Article  CAS  Google Scholar 

  87. D.L. Medlin and G.J. Snyder: Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 14, 226 (2009).

    Article  CAS  Google Scholar 

  88. D.J. Bergman and O. Levy: Thermoelectric properties of a composite medium. J. Appl. Phys. 70, 6821 (1991).

    Article  Google Scholar 

  89. J.M.O. Zide, D. Vashaee, Z.X. Bian, G.H. Zeng, J.E. Bowers, and A. Shakouri: Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 74, 205335 (2006).

    Article  CAS  Google Scholar 

  90. M. Zebarjadi, K. Esfarjani, S. Shakouri, Z.X. Bian, J.H. Bahk, and G.H. Zeng: Effect of nanoparticles on electron and thermoelectric transport. J. Electron. Mater. 38, 954 (2009).

    Article  CAS  Google Scholar 

  91. D. Li, Y. Wu, and R. Fan, P. Yang, and A. Marjumdar: Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003).

    Article  CAS  Google Scholar 

  92. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Marjumdar: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).

    Article  CAS  Google Scholar 

  93. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670 (2008).

    Article  CAS  Google Scholar 

  94. C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack: Ultra low thermal conductivity in disordered layer WSe2 crystals. Science 315, 351 (2006).

    Article  CAS  Google Scholar 

  95. G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  96. D.G. Cahill, S.K. Watson, and R.O. Pohl: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).

    Article  CAS  Google Scholar 

  97. A. Watanabe, T. Fukui, K. Nogi, Y. Kizaki, Y. Noguchi, and M. Miyayama: High-quality lead-free ferroelectric ceramics prepared from flash-creating-method-derived nanopowder. J. Ceram. Soc. Jpn. 114, 97 (2006).

    Article  CAS  Google Scholar 

  98. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei, and X.Y. Li: Synthesis of YbyCo4Sb12/Y2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092121 (2006).

    Article  CAS  Google Scholar 

  99. E. Alleno, L. Chen, C. Chubilleau, B. Lenoir, O. Rouleau, M.F. Trichet, and B. Villeroy: Thermal conductivity reduction in CoSb2-CeO2 nanocomposites. J. Electron. Mater. 39, 1966 (2010).

    Article  CAS  Google Scholar 

  100. Z. He, C. Stiewe, D. Platzek, G. Karpinski, E. Muller, S. Li, M. Torpak, and M. Muhammed: Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites. J. Appl. Phys. 101, 043707 (2007).

    Article  CAS  Google Scholar 

  101. D. Berardan, E. Guilmeau, A. Maignan, and B. Raveau: In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Commun. 146, 97 (2008).

    Article  CAS  Google Scholar 

  102. N. Wang, L. Han, Y. Ba, Y. Wang, C. Wan, K. Fujinami, and K. Koumoto: Effects of YSZ additions on thermoelectric properties of Nb-doped strontium titanate. J. Electron. Mater. 39, 1777 (2010).

    Article  CAS  Google Scholar 

  103. N. Wang, L. Han, H. He, Y. Ba, and K. Koumoto: Effects of mesoporous silica addition on thermoelectric properties of Nb-doped SrTiO3. J. Alloy. Comp. 497, 308 (2010).

    Article  CAS  Google Scholar 

  104. N. Wang, H. He, Y. Ba, C. Wan, and K. Koumoto: Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition. J. Ceram. Soc. Jpn. 118, 1098 (2010).

    Article  Google Scholar 

  105. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis: New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  106. S. Yeo, Y. Horibe, S. Mori, C.M. Tseng, C.H. Chen, A.G. Khachaturyan, C.L. Zhang, and S.-W. Cheong: Solid-state self-assembly of nanocheckerboards. Appl. Phys. Lett. 89, 233120 (2006).

    Article  CAS  Google Scholar 

  107. A. Kosuga, K. Kurosaki, K. Yubuta, A. Charoenphakdee, S. Yamanaka, and R. Funahashi: Thermal conductivity characterization in bulk Zn(Mn, Ga)O4 with self-assembled nanocheckerboard structures. Jpn. J. Appl. Phys. 48, 010201 (2009).

    Article  CAS  Google Scholar 

  108. Z. Hashin and S. Shtrikman: On some variational principles in anisotropic and non-homogeneous elasticity. J. Mech. Phys. Solids 10, 335 (1962).

    Article  Google Scholar 

  109. Z. Hashin and S. Shtrikman: Extremum principles for elastic heterogeneous media with imperfect interfaces and their application to bounding of effective moduli. J. Mech. Phys. Solids 10, 343 (1962).

    Article  CAS  Google Scholar 

  110. I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno: Fabrication of an all-oxide thermoelectric power generator. Appl. Phys. Lett. 78, 3627 (2001).

    Article  CAS  Google Scholar 

  111. W. Shin, N. Murayama, K. Ikeda, and S. Sago: Thermoelectric power generation using Li-doped NiO and (Ba, Sr)PbO3 module. J. Power Sources 103, 80 (2001).

    Article  CAS  Google Scholar 

  112. R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, and M. Mikami: Ca2.7Bi0.3Co4O9-La0.9Bi0.1NiO3 thermoelectric devices with high output power density. Appl. Phys. Lett. 85, 1036 (2004).

    Article  CAS  Google Scholar 

  113. S. Urata, R. Funahashi, T. Mihara, A. Kosuga, S. Sodeoka, and T. Tanaka: Power generation of a p-Type Ca3Co4O9/n-type CaMnO3 module. Int. J. Appl. Ceram. Technol. 4, 535 (2007).

    Article  CAS  Google Scholar 

  114. K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Leda, T. Ota, Y. Kajiwara, U. Umezawa, H. Kawai, G.E.W. Bauer, S. Maekawa, and E. Saitoh: Spin Seebeck insulator. Nat. Mater. 9, 894 (2010).

    Article  CAS  Google Scholar 

  115. T.E. Humphery and K. Linke: Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005).

    Article  CAS  Google Scholar 

  116. R. Funanashi, M. Mikami, S. Urata, M. Kitawaki, T. Kouuchi, and K. Mizuno: High-throughput screening of thermoelectric oxides and power generation modules consisting of oxide unicouples. Meas. Sci. Technol. 16, 70 (2005).

    Article  Google Scholar 

  117. K. Kihou, C.H. Lee, K. Miyazawa, P.M. Shirage, A. Iyo, and H. Eisaki: Thermoelectric properties of LaFeAsO1-y at low temperature. J. Appl. Phys. 108, 033703 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

J.H. and Y.F.L thank Dr. Don Liebenberg for helpful discussion and the support from a Department of Energy/ Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) Implementation Grant (No. DE-FG02-04ER-46139), and in addition, support from the SC EPSCoR Office/Clemson University cost sharing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Liu, Y. & Funahashi, R. Oxide thermoelectrics: The challenges, progress, and outlook. Journal of Materials Research 26, 1762–1772 (2011). https://doi.org/10.1557/jmr.2011.108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.108

Navigation