Skip to main content
Log in

Origin and magnitude of the large piezoelectric response in the lead-free (1-x)BiFeO3-xBaTiO3 solid solution

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mechanisms and magnitudes of the large piezoelectric response observed in lead-free (1-x) BiFeO3-xBaTiO3 (BFBT) ceramics are investigated. Preceding studies reported significant strain hysteresis and hard ferroelectric behavior in BFBT leading to a small low-field piezoelectric coefficient, instability of the poled domain state, and rapid degradation of piezoelectric properties. The current investigation shows that under application of a suitable direct current (dc) bias to stabilize the ferroelectric phase low- and high-field piezoelectric coefficients (d33) of 150 pC/N and 250 pC/N are observed for the composition 0.67BiFeO3-0.33BaTiO3 + 0.1 wt% MnO with a Curie temperature of 605 °C. Such enhancement of electromechanical properties under dc bias is in contrast to the expected behavior in traditional piezoelectric materials such as soft lead zirconate titanate (PZT). The large piezoelectric coefficients confirm strong intrinsic and extrinsic contributions to the piezoelectric response in BFBT, which coupled with high ferroelectric Curie temperature TC > 500 °C, suggests BFBT-based materials as promising lead-free alternatives to PZT piezoceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Table II
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.B. Gray: Transducer and method of making the same, in United States Patent Office (Erie Resistor Corporation, Erie, PA, 1949).

    Google Scholar 

  2. S. Roberts: Dielectric and piezoelectric properties of barium titanate. Phys. Rev. 71, 890 (1947).

    Article  CAS  Google Scholar 

  3. G. Catalan and J.F. Scott: Physics and application of bismuth ferrite. Adv. Mater. 21, 2463 (2009).

    Article  CAS  Google Scholar 

  4. F. Jona and G. Shirane: Ferroelectric Crystals (Dover Publications Inc., New York, 1993).

    Google Scholar 

  5. H. Jaffe: Piezoelectric ceramics. J. Am. Ceram. Soc. 41, 494 (1958).

    Article  CAS  Google Scholar 

  6. S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi, and T. Kimura: Domain wall engineering in lead-free piezoelectric grain-oriented ceramics. Ferroelectrics 373, 11 (2008).

    Article  CAS  Google Scholar 

  7. C. Michel, J.M. Moreau, G.D. Achenbac, R. Gerson, and W.J. James: Atomic structures of 2 rhombohedral ferroelectric phases in Pb(Zr, Ti)O3 solid solution series. Solid State Commun. 7, 865 (1969).

    Article  CAS  Google Scholar 

  8. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).

    Article  CAS  Google Scholar 

  9. V.V. Shvartsman, W. Kleemann, R. Haumont, and J. Kreisel: Large bulk polarization and regular domain structure in ceramic BiFeO3. Appl. Phys. Lett. 90, 172115 (2007).

    Article  Google Scholar 

  10. N.A. Hill: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).

    Article  CAS  Google Scholar 

  11. M.M. Kumar, A. Srinivas, and S.V. Suryanarayana: Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855 (2000).

    Article  CAS  Google Scholar 

  12. N. Itoh, T. Shimura, W. Sakamoto, and T. Yogo: Fabrication and characterization of BiFeO3-BaTiO3 ceramics by solid state reaction. Ferroelectrics 356, 311 (2007).

    Article  Google Scholar 

  13. Y. Horibe, M. Nakayama, Y. Hosokoshi, T. Asaka, Y. Matsui, T. Asada, Y. Koyama, and S. Mori: Microstructures associated with dielectric and magnetic properties in (1-x)BiFeO3- xBaTiO3. Jpn. J. Appl. Phys., Part 1 44, 7148 (2005).

    Article  CAS  Google Scholar 

  14. S. Kitagawa, T. Ozaki, Y. Horibe, K. Yoshii, and S. Mori: Ferroelectric domain structures in BiFeO3-BaTiO3. Ferroelectrics 376, 318 (2008).

    Article  Google Scholar 

  15. S.O. Leontsev and R.E. Eitel: Dielectric and piezoelectric properties in Mn-modified (l-x)BiFeO3-xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957 (2009).

    Article  CAS  Google Scholar 

  16. Y. Yoneda, K. Yoshii, S. Kohara, S. Kitagawa, and S. Mori: Local structure of BiFeO3-BaTiO3 mixture. Jpn. J. Appl. Phys. 47, 7590 (2008).

    Article  CAS  Google Scholar 

  17. D. Damjanovic and M. Demartin: The Rayleigh law in piezoelectric ceramics. J. Phys. D: Appl. Phys. 29, 2057 (1996).

    Article  CAS  Google Scholar 

  18. D.A. Hall: Review: Nonlinearity in piezoelectric ceramics. J. Mater. Sci. 36, 4575 (2001).

    Article  CAS  Google Scholar 

  19. R.E. Eitel, T.R. Shrout, and C.A. Randall: Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics. J. Appl. Phys. 99, 124110 (2006).

    Article  Google Scholar 

  20. R.E. Eitel and C.A. Randall: Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb(Zr, Ti)O3. Phys. Rev. B 75, 094106 (2007).

    Article  Google Scholar 

  21. D. Damjanovic: Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788 (1997).

    Article  CAS  Google Scholar 

  22. IRE Standards on Piezoelectric Crystals: Measurements of piezoelectric ceramics. Proc. Inst. Radio Eng. 49, 1161 (1961).

    Google Scholar 

  23. A. Pramanick, D. Damjanovic, J.C. Nino, and J.L. Jones: Sub-coercive cyclic electrical loading of lead zirconate titanate ceramics. I: Nonlinearities and losses in the converse piezoelectric effect. J. Am. Ceram. Soc. 92, 2291 (2009).

    Article  CAS  Google Scholar 

  24. Y.J. Dai, S.J. Zhang, T.R. Shrout, and X.W. Zhang: Piezoelectric and ferroelectric properties of Li-doped (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93, 1108 (2010).

    Article  CAS  Google Scholar 

  25. Y. Hiruma, H. Nagata, and T. Takenaka: Depolarization temperature and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2Li1/2) TiO3-(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Ceram. Int. 35, 117 (2009).

    Article  CAS  Google Scholar 

  26. T.R. Shrout and S.J. Zhang: Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 111 (2007).

    Article  CAS  Google Scholar 

  27. T. Takenaka, H. Nagata, and Y. Hiruma: Current developments and prospective of lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 47, 3787 (2008).

    Article  CAS  Google Scholar 

  28. D.A. Berlincourt, D.R. Curran, and H. Jaffe: Physical Acoustics: Principle and Methods, edited by W.P. Mason (Academic Press, New York, 1964).

  29. S.J. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, and E.F. Alberta: Manganese-modified BiScO3-PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl. Phys. Lett. 86, 262904 (2005).

    Article  Google Scholar 

  30. Q.M. Zhang, H. Wang, N. Kim, and L.E. Cross: Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature-dependence on lead-zirconate-titanate ceramics. J. Appl. Phys. 75, 454 (1994).

    Article  CAS  Google Scholar 

  31. E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter: Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905 (2005).

    Article  Google Scholar 

  32. S.P. Li, A.S. Bhalla, R.E. Newnham, and L.E. Cross: Quantitative-evaluation of extrinsic contribution to piezoelectric coefficient d33 in ferroelectric PZT ceramics. Mater. Lett. 17, 21 (1993).

    Article  CAS  Google Scholar 

  33. Q.M. Zhang, W.Y. Pan, S.J. Jang, and L.E. Cross: Domain-wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics. J. Appl. Phys. 64, 6445 (1988).

    Article  CAS  Google Scholar 

  34. V. Perrin, M. Troccaz, and P. Gonnard: Non-linear behavior of the permittivity and of the piezoelectric strain constant under high electric field drive. J. Electroceram. 4, 189 (2000).

    Article  CAS  Google Scholar 

  35. T. Ozaki, S. Kitagawa, S. Nishihara, Y. Hosokoshi, M. Suzuki, Y. Noguchi, M. Miyayama, and S. Mori: Ferroelectric properties and nano-scaled domain structures in (l-x)BiFeO3-xBaTiO3 (0.33 < x < 0.50). Ferroelectrics 385, 155 (2009).

    Article  CAS  Google Scholar 

  36. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel: Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007).

    Article  Google Scholar 

  37. S.T. Zhang, A.B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and J. Rodel: Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. II. Temperature dependent properties. J. Appl. Phys. 103, 034108 (2008).

    Article  Google Scholar 

  38. J.F. Scott: Leading the way to lead-free. ChemPhysChem 11, 341 (2010).

    Article  CAS  Google Scholar 

  39. R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hart, Q. He, C.H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, and R. Ramesh: A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977 (2009).

    Article  CAS  Google Scholar 

  40. E.K. Akdogan, K. Kerman, M. Abazari, and A. Safari: Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett. 92, 112908 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ishihara Corporation USA for providing titania powder, MCP Metalspecialties Inc. for providing bismuth oxide powders, and TRS Ceramics for providing the TRS500HD samples used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhiy O. Leontsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leontsev, S.O., Eitel, R.E. Origin and magnitude of the large piezoelectric response in the lead-free (1-x)BiFeO3-xBaTiO3 solid solution. Journal of Materials Research 26, 9–17 (2011). https://doi.org/10.1557/jmr.2010.44

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.44

Navigation