Skip to main content
Log in

Combinatorial nanocalorimetry

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The parallel nano-scanning calorimeter (PnSC) is a silicon-based micromachined device for calorimetric measurement of nanoscale materials in a high-throughput methodology. The device contains an array of nanocalorimeters. Each nanocalorimeter consists of a silicon nitride membrane and a tungsten heating element that also serves as a temperature gauge. The small mass of the individual nanocalorimeters enables measurements on samples as small as a few hundred nanograms at heating rates up to 104 K/s. The sensitivity of the device is demonstrated through the analysis of the melting transformation of a 25-nm indium film. To demonstrate the combinatorial capabilities, the device is used to analyze a Ni-Ti-Zr sample library. The as-deposited amorphous samples are crystallized by local heating in a process that lasts just tens of milliseconds. The martensite-austenite transformation in the Ni-Ti-Zr shape memory alloy system is analyzed and the dependence of transformation temperature and specific heat on composition is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Rodgers, D. Cebon: Materials informatics. MRS Bull.31, (12) 975 (2006)

    Article  Google Scholar 

  2. P.J. McCluskey, J.J. Vlassak: Parallel nano-differential scanning calorimetry: A new device for combinatorial analysis of complex nano-scale material systems, Mechanics of Nanoscale Materials and Devicesedited by A. Misra, J.P. Sullivan, H. Huang, K. Lu, and S. Asif (Mater. Res. Soc. Symp. Proc 924EWarrendale, PA 2006) 0924-Z08-14

  3. E.J. Amis, X.D. Xiang, J.C. Zhao: Combinatorial materials science: What’s new since Edison? MRS Bull.27, (4) 295 (2002)

    Article  CAS  Google Scholar 

  4. Y.L. Dar: High-throughput experimentation: A powerful enabling technology for the chemicals and materials industry. Macromol. Rapid Commun.25, (1) 34 (2004)

    Article  CAS  Google Scholar 

  5. H. Koinuma, I. Takeuchi: Combinatorial solid-state chemistry of inorganic materials. Nat. Mater.3, (7) 429 (2004)

    Article  CAS  Google Scholar 

  6. K. Rajan: Combinatorial materials sciences: Experimental strategies for accelerated knowledge discovery. Annu. Rev. Mater. Res.38299 (2008)

    Article  CAS  Google Scholar 

  7. M.B. Francis, T.F. Jamison, E.N. Jacobsen: Combinatorial libraries of transition-metal complexes, catalysts and materials. Curr. Opin. Chem. Biol.2, (3) 422 (1998)

    Article  CAS  Google Scholar 

  8. J.C. Meredith, A.P. Smith, A. Karim, E.J. Amis: Combinatorial materials science for polymer thin-film dewetting. Macromolecules33, (26) 9747 (2000)

    Article  CAS  Google Scholar 

  9. I. Takeuchi, M. Lippmaa, Y. Matsumoto: Combinatorial experimentation and materials informatics. MRS Bull.31, (12) 999 (2006)

    Article  CAS  Google Scholar 

  10. J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z.Y. Zhang, I. Takeuchi: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater.5, (4) 286 (2006)

    Article  CAS  Google Scholar 

  11. B. Revaz, B.L. Zink, F. Hellman: Si-N membrane-based microcalorimetry: Heat capacity and thermal conductivity of thin films. Thermochim. Acta432, (2) 158 (2005)

    Article  CAS  Google Scholar 

  12. A.A. Minakov, S.A. Adamovsky, C. Schick: Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim. Acta432, (2) 177 (2005)

    Article  CAS  Google Scholar 

  13. E.A. Olson, M. Yu, Y. Efremov, M. Zhang, Z.S. Zhang, L.H. Allen: The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat-capacity measurements of ultrathin films. J. Microelectromech. Syst.12, (3) 355 (2003)

    Article  Google Scholar 

  14. M. Hersscher: A micro differential scanning calorimetry system.Diploma Thesis, Albert-Ludwigs University, Freiburg, Germany 2003

    Google Scholar 

  15. M.Y. Efremov, E.A. Olson, M. Zhang, F. Schiettekatte, Z.S. Zhang, L.H. Allen: Ultrasensitive, fast, thin-film differential scanning calorimeter. Rev. Sci. Instrum.75, (1) 179 (2004)

    Article  CAS  Google Scholar 

  16. CRC Handbook of Chemistry and Physics, (CRC Press, Cleveland, OH 1977)

  17. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen: Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett.77, (1) 99 (1996)

    Article  CAS  Google Scholar 

  18. M.Y. Efremov, F. Schiettekatte, M. Zhang, E.A. Olson, A.T. Kwan, R.S. Berry, L.H. Allen: Discrete periodic melting point observations for nanostructure ensembles. Phys. Rev. Lett.85, (17) 3560 (2000)

    Article  CAS  Google Scholar 

  19. M. Zhang, M.Y. Efremov, F. Schiettekatte, E.A. Olson, A.T. Kwan, S.L. Lai, T. Wisleder, J.E. Greene, L.H. Allen: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B62, (15) 10548 (2000)

    Article  CAS  Google Scholar 

  20. H.Y. Kim, M. Mizutani, S. Miyazaki: Crystallization process and shape memory properties of Ti-Ni-Zr thin films. Acta Mater.57, (6) 1920 (2009)

    Article  CAS  Google Scholar 

  21. S.F. Hsieh, S.K. Wu: A study on lattice parameters of martensite in Ti50.5-xNi49.5Zrxshape memory alloys. J. Alloys Compd.270, (1-2) 237 (1998)

    Article  CAS  Google Scholar 

  22. K. Otsuka, X.B. Ren: Recent developments in the research of shape memory alloys. Intermetallics7, (5) 511 (1999)

    Article  CAS  Google Scholar 

  23. X.Y. Huang, G.J. Ackland, K.M. Rabe: Crystal structures and shape-memory behaviour of NiTi. Nat. Mater.2, (5) 307 (2003)

    Article  CAS  Google Scholar 

  24. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater.48, (1) 279 (2000)

    Article  CAS  Google Scholar 

  25. S.F. Hsieh, S.K. Wu: Room-temperature phases observed in Ti53-xNi47Zrx high-temperature shape-memory alloys. J. Alloys Compd.266, (1-2) 276 (1998)

    Article  CAS  Google Scholar 

  26. S.F. Hsieh, S.K. Wu: A study on ternary Ti-rich TiNiZr shape memory alloys. Mater. Charact.41, (4) 151 (1998)

    Article  CAS  Google Scholar 

  27. W.J. Tang: Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys. Metall. Mater. Trans. A28, (3) 537 (1997)

    Article  Google Scholar 

  28. E. Cesari, P. Ochin, R. Portier, V. Kolomytsev, Y. Koval, A. Pasko, V. Soolshenko: Structure and properties of Ti-Ni-Zr and Ti-Ni-Hf melt-spun ribbons. Mater. Sci. Eng., A273738 (1999)

    Article  Google Scholar 

  29. X. Wang: Crystallization and martensitic transformation behavior of NiTi shape memory alloy thin films.Diploma Thesis, Harvard University, Cambridge, MA 2007

    Google Scholar 

  30. T. Waitz, T. Antretter, F.D. Fischer, N.K. Simha, H.P. Karnthaler: Size effects on the martensitic phase transformation of NiTi nanograins. J. Mech. Phys. Solids55, (2) 419 (2007)

    Article  CAS  Google Scholar 

  31. G.L. Fan, W. Chen, S. Yang, J.H. Zhu, X.B. Ren, K. Otsuka: Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti-Ni shape memory alloys. Acta Mater.52, (14) 4351 (2004)

    Article  CAS  Google Scholar 

  32. X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Y.I. Chumlyakov: A comparative study of elastic constants of Ti-Ni-based alloys prior to martensitic transformation. Mater. Sci. Eng., A312, (1-2) 196 (2001)

    Article  Google Scholar 

  33. T. Waitz, V. Kazykhanov, H.P. Karnthaler: Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater.52, (1) 137 (2004)

    Article  CAS  Google Scholar 

  34. A. Gyobu, Y. Kawamura, H. Horikawa, T. Saburi: Martensitic transformation and two-way shape memory effect of sputter-deposited Ni-rich Ti-Ni alloy films. Mater. Sci. Eng., A273749 (1999)

    Article  Google Scholar 

  35. I.N. Sneddon: Fourier Transforms(McGraw-Hill, New York 1951)

    Google Scholar 

  36. P.J. McCluskey, J.J. Vlassak: Nano-thermal transport array: An instrument for combinatorial measurements of heat transfer in nanoscale films. Thin Solid Films5187093 (2010 DOI: 10.1016/j.tsf.2010.05.124)

    Article  CAS  Google Scholar 

  37. A. Jain, K.E. Goodson: Measurement of the thermal conductivity and heat capacity of freestanding shape-memory thin films using the 3 omega method. J. Heat Transfer-Trans. ASME130, (10) 102402-1 (2008)

    Article  Google Scholar 

  38. Z.A. Andrzej, R.A. Bogdan, S. Miyazaki: Stress induced martensitic transformation kinetics of polycrystalline NiTi shape memory alloy. Mater. Sci. Eng., A378, (1-2) 86 (2004)

    Article  Google Scholar 

  39. C.H. Mastrangelo, Y.C. Tai, R.S. Muller: Thermophysical properties of low-residual stress, silicon-rich, LPCVD silicon nitride films. Sens. Actuators, A21-23856 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost J. Vlassak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCluskey, P.J., Vlassak, J.J. Combinatorial nanocalorimetry. Journal of Materials Research 25, 2086–2100 (2010). https://doi.org/10.1557/jmr.2010.0286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0286

Navigation