Skip to main content
Log in

Free-volume dependent pressure sensitivity of Zr-based bulk metallic glass

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Instrumented indentation experiments on a Zr-based bulk metallic glass (BMG) in as-cast, shot-peened and structurally relaxed conditions were conducted to examine the dependence of plastic deformation on its structural state. Results show significant differences in hardness, H, with structural relaxation increasing it and shot peening markedly reducing it, and slightly changed morphology of shear bands around the indents. This effect is in contrast to uniaxial compressive yield strength, σy, which remains invariant with the change in the structural state of the alloys investigated. The plastic constraint factor, C = H/σy, of the relaxed BMG increases compared with that of the as-cast glass, indicating enhanced pressure sensitivity upon annealing. In contrast, C of the shot-peened layer was found to be similar to that observed in crystalline metals, indicating that severe plastic deformation could eliminate pressure sensitivity. Microscopic origins for this result, in terms of shear transformation zones and free volume, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Conner, W.L. Johnson, N.E. Paton, and W.D. Nix: Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904 (2003).

    Article  CAS  Google Scholar 

  2. A. Castellero, D.I. Uhlenhaut, B. Moser, and J.F. Löffler: Critical Poisson ratio for room-temperature embrittlement of amorphous Mg85Cu5Y10. Philos. Mag. Lett. 87, 383 (2007).

    Article  CAS  Google Scholar 

  3. A. Dubach, R. Raghavan, J.F. Löffler, J. Michler, and U. Ramamurty: Micropillar compression studies on a bulk metallic glass in different structural states. Scr. Mater. 60, 567 (2009).

    Article  CAS  Google Scholar 

  4. M.N.M. Patnaik, R. Narasimhan, and U. Ramamurty: Spherical indentation response of metallic glasses. Acta Mater. 52, 3335 (2004).

    Article  CAS  Google Scholar 

  5. K. Eswar Prasad, R. Raghavan, and U. Ramamurty: Temperature dependence of pressure sensitivity in a metallic glass. Scr. Mater. 57, 121 (2007).

    Article  CAS  Google Scholar 

  6. V. Keryvin, K. Eswar Prasad, Y. Gueguen, J-C. Sangleboeuf, and U. Ramamurty: Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transition. Philos. Mag. 88, 1773 (2008).

    Article  CAS  Google Scholar 

  7. K. Eswar Prasad, V. Keryvin, and U. Ramamurty: Pressure sensitive flow and constraint factor in amorphous materials below glass transition. J. Mater. Res. 24, 890 (2009).

    Article  CAS  Google Scholar 

  8. R. Raghavan, P. Murali, and U. Ramamurty: Ductile to brittle transition in the Zr41.2Ti13.75Cu12.5Ni10Be22.5 bulk metallic glass. Intermatallics 14, 1051 (2006).

    Article  CAS  Google Scholar 

  9. P. Murali and U. Ramamurty: Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater. 53, 1467 (2005).

    Article  CAS  Google Scholar 

  10. R. Raghavan, R. Ayer, H.W. Jin, C.N. Marzinsky, and U. Ramamurty: Effect of shot peening on the fatigue life of a Zr-based bulk metallic glass. Scr. Mater. 59, 167 (2008).

    Article  CAS  Google Scholar 

  11. R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Huag, J. Patscheider, and J. Michler: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469, 206 (2004).

    Article  Google Scholar 

  12. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  13. B. Moser, J.F. Löffler, and J. Michler: Discrete deformation in amorphous metals: An in situ SEM indentation study. Philos. Mag. 86, 5715 (2006).

    Article  CAS  Google Scholar 

  14. V. Keryvin: Indentation of bulk metallic glasses: Relationships between shear bands observed around the prints and hardness. Acta Mater. 55, 2565 (2007).

    Article  CAS  Google Scholar 

  15. C.A. Schuh, A.C. Lund, and T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).

    Article  CAS  Google Scholar 

  16. Y. Zhang, W.H. Wang, and A.L. Greer: Making metallic glasses plastic by control of residual stress. Nat. Mater. 5, 857 (2006).

    Article  CAS  Google Scholar 

  17. L.Y. Chen, Q. Ge, S. Qu, and J.Z. Jiang: Stress-induced softening and hardening in a bulk metallic glass. Scr. Mater. 59, 1210 (2008).

    Article  CAS  Google Scholar 

  18. R. Bhowmick, R. Raghavan, K. Chattopadhyay, and U. Ramamurty: Plastic flow softening in a bulk metallic glass. Acta Mater. 54, 4221 (2006).

    Article  CAS  Google Scholar 

  19. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  20. U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay: Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 53, 705 (2005).

    Article  CAS  Google Scholar 

  21. L.M. Kachanov: Fundamentals of the Theory of Plasticity (Mir Publishers, Moscow, Russia, 1974), p. 22.

    Google Scholar 

  22. V. Keryvin, R. Crosnier, R. Laniel, V.H. Hoang, and J-C. Sangleboeuf: Indentation and scratching mechanisms of a ZrCuAlNi bulk metallic glass. J. Phys. D: Appl. Phys. 41, 074029 (2008).

    Article  Google Scholar 

  23. G.S. Yu, J.G. Lin, M. Mo, X.F. Wang, F.H. Wang, and C.E. Wen: Effect of relaxation on pressure sensitivity index in a Zr-based metallic glass. Mater. Sci. Eng., A 460, 58 (2007).

    Article  Google Scholar 

  24. A.S. Argon: Plastic deformation in metallic glass. Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  25. C.A. Schuh, T.C. Hufnagel, and U. Ramammurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  26. A. Dubach, F.H. Dalla Torre, and J.F. Löffler: Constitutive model for inhomogeneous flow in bulk metallic glasses. Acta Materl. 57, 881 (2009).

    Article  CAS  Google Scholar 

  27. D.I. Uhlenhaut, F.H. Dalla Torre, A. Castellero, C.A.P. Gomez, N. Djourelov, G. Krauss, B. Schmitt, B. Patterson, and J.F. Löffler: Structural analysis of rapidly solidified Mg-Cu-Y glasses during room-temperature embrittlement. Philos. Mag. 89, 233 (2009).

    Article  CAS  Google Scholar 

  28. S. Xie and E.P. George: Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing. Acta Mater. 56, 5202 (2008).

    Article  CAS  Google Scholar 

  29. B-G. Yoo, K-W. Park, J-C. Lee, U. Ramamurty, and J-I. Jang: Role of free volume in strain softening of as-cast and annealed bulk metallic glass. J. Mater. Res. 24, 1405 (2009).

    Article  CAS  Google Scholar 

  30. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  31. F. Spaepen: A microscopic mechanism for steady state inhomo-geneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  32. K. Hajlaoui, T. Benameur, G. Vaughan, and A.R. Yavari: Thermal expansion and indentation-induced free volume in Zr-based metallic glasses measured by real-time diffraction using synchro-tron radiation. Scr. Mater. 51, 843 (2004).

    Article  CAS  Google Scholar 

  33. W.J. Wright, T.C. Hufnagel, and W.D. Nix: Free volume coalescence and void formation in shear bands in metallic glass. J. Appl. Phys. 93, 1432 (2003).

    Article  CAS  Google Scholar 

  34. J. Li, Z.L. Wang, and T.C. Hufnagel: Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy. Phys. Rev. B: Condens. Matter 65, 144201 (2002).

    Article  Google Scholar 

  35. K.M. Flores, E. Sherer, A. Bharathula, H. Chen, and Y.C. Jean: Sub-nanometer open volume regions in a bulk metallic glass investigated by positron annihilation. Acta Mater. 55, 3403 (2007).

    Article  CAS  Google Scholar 

  36. A.Y. Vinogradov and V.A. Khonik: Kinetics of shear banding in a bulk metallic glass monitored by acoustic emission measurements. Philos. Mag. 84, 2147 (2004).

    Article  CAS  Google Scholar 

  37. B. Zberg, E.R. Arata, P.J. Uggowitzer, and J.F. Löffler: Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater. 57, 3223 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upadrasta Ramamurty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubach, A., Prasad, K.E., Raghavan, R. et al. Free-volume dependent pressure sensitivity of Zr-based bulk metallic glass. Journal of Materials Research 24, 2697–2704 (2009). https://doi.org/10.1557/jmr.2009.0304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0304

Navigation