Skip to main content
Log in

Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress–strain curves

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, instrumented nanoindentation experiments with two spherical tips with radii of 13.5 and 1 μm were used to explore the deformation behavior of ZnO single crystals with two orientations, C (basal) and A (prism). By converting the nanoindentation load–displacement data to stress–strain curves, we show that the main reason the hardening rates are higher for the C plane than they are for the A plane is the activation of dislocations—with widely different flow stresses—on different sets of slip planes. For the former, glide occurs on basal planes as well as pyramidal planes; for the latter, glide occurs predominantly on basal planes. The C plane is roughly twice as hard as the A plane, probably due to the orientation of basal planes with respect to the indentation axis. A Weibull statistical analysis of the pop-in stresses indicates that the inherent defect concentration at or near the surface is the main factor for the initiation of plastic deformation. The strain energy released when the pop-ins occur determines their extent. The elastic moduli values, determined by Berkovich nanoindentation, are 135 ± 3 GPa and 144 ± 4 GPa for the C and A planes, respectively. In the C orientation repeated indentations to the same stress result in fully reversible hysteretic loops that are attributed to the formation of incipient kink bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. S.O. Kucheyev, J.E. Bradby, J.S. Williams, C. Jagadish M.V. Swain: Mechanical deformation of single-crystal ZnO. App. Phys. Lett. 80, 956 2002

    Article  CAS  Google Scholar 

  2. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho H. Morkoc: A comprehensive review of ZnO materials and devices. J. App. Phys. 98, 041301 2005

    Article  Google Scholar 

  3. J.S. Ahearn, J.J. Mills A.R.C. Westwood: Effect of electrolyte pH and bias voltage on the hardness of the (0001) ZnO surface. J. Appl. Phys. 49, 96 1978

    Article  CAS  Google Scholar 

  4. S.V. Prasad J.S. Zabinski: Tribological behavior of nanocrystalline zinc oxide films. Wear 203–204, 498 1997

    Article  Google Scholar 

  5. J.E. Bradby, S.O. Kucheyev, J.S. Williams, C. Jagadish, M.V. Swain, P. Munroe M.R. Phillips: Contact-induced defect propagation in ZnO. App. Phys. Lett. 80, 4537 2002

    Article  CAS  Google Scholar 

  6. V.A. Coleman, J.E. Bradby, C. Jagadish, P. Munroe, Y.W. Heo, S.J. Pearton, D.P. Norton, M. Inoue M. Yano: Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. App. Phys. Lett. 86, 203105 2005

    Article  Google Scholar 

  7. V.A. Coleman, J.E. Bradby, C. Jagadish M.R. Phillips: A comparison of the mechanical properties and the impact of contact induced in a and c-axis ZnO single crystals in Zinc Oxide and Related Materials edited by J. Christen, C. Jagadish, D.C. Look, T. Yao, and F. Bertram (Mater. Res. Soc. Symp. Proc. 957Warrendale, PA 2007 0957–K07–17

  8. M.W. Barsoum, A. Murugaiah, S.R. Kalidindi T. Zhen: Kinking nonlinear elastic solids, nanoindentations and geology. Phys. Rev. Lett. 92, 255508–1 2004

    Article  CAS  Google Scholar 

  9. M.W. Barsoum, A. Murugaiah, S.R. Kalidindi Y. Gogotsi: Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42, 1435 2004

    Article  CAS  Google Scholar 

  10. S. Basu, M.W. Barsoum S.R. Kalidindi: Sapphire: A kinking nonlinear elastic solid. J. Appl. Phys. 99, 063501 2006

    Article  Google Scholar 

  11. S. Basu, A. Moseson M.W. Barsoum: On the determination of spherical nanoindentation stress–strain curves. J. Mater. Res. 21, 2628 2006

    Article  CAS  Google Scholar 

  12. A. Murugaiah, M.W. Barsoum, S.R. Kalidindi T. Zhen: Spherical nanoindentations in Ti3SiC2. J. Mater. Res. 19, 1139 2004

    Article  CAS  Google Scholar 

  13. K.L. Johnson: Contact Mechanics Cambridge University Press Cambridge, UK 1985

    Book  Google Scholar 

  14. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas J.L. Hay: On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398–399, 331 2001

    Article  Google Scholar 

  15. J.S. Field M.V. Swain: Determining the mechanical-properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 1995

    Article  CAS  Google Scholar 

  16. D. Tabor: Hardness of Metals Clarendon Oxford, UK 1951

    Google Scholar 

  17. J.E. Bradby, J.S. Williams M.V. Swain: Pop-in events induced by spherical indentation in compound semiconductors. J. Mater. Res. 19, 380 2004

    Article  CAS  Google Scholar 

  18. M.W. Barsoum, T. Zhen, A. Zhou, S. Basu S.R. Kalidindi: Microscale modeling of kinking nonlinear elastic solids. Phys. Rev. B 71, 134101 2005

    Article  Google Scholar 

  19. M.W. Barsoum, T. Zhen, S.R. Kalidindi, M. Radovic A. Murugahiah: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107 2003

    Article  CAS  Google Scholar 

  20. S. Basu, M.W. Barsoum, A.D. Williams T.D. Moustakas: Spherical nanoindentation and deformation mechanisms in free-standing GaN films. J. App. Phys., 101, 083522–1 2007

    Article  Google Scholar 

  21. F.C. Frank A.N. Stroh On the theory of kinking. Proc. Phys. Soc., 65, 811 1952

    Article  Google Scholar 

  22. A.G. Zhou, M.W. Barsoum, S. Basu, S.R. Kalidindi T. El-Raghy: Incipient and regular kink bands in dense and porous Ti2AlC. Acta Mater. 54, 1631 2006

    Article  CAS  Google Scholar 

  23. V.A. Coleman, J.E. Bradby, C. Jagadish M.R. Phillips: Observation of enhanced defect emission and excitonic quenching from spherically indented ZnO. App. Phys. Lett. 89, 082102 2006

    Article  Google Scholar 

  24. B.J. Kooi, R.J. Poppen, N.J.M. Carvalho, J.T.M. DeHosson M.W. Barsoum: Ti3SiC2: A damage tolerant ceramic studied with nanoindentations and transmission electron microscopy. Acta Mater. 51, 2859 2003

    Article  CAS  Google Scholar 

  25. J.M. Molina-Aldareguia, J. Emmerlich, J. Palmquist, U. Jansson L. Hultman: Kink formation around indents in laminated Ti3SiC2 thin-films studied in the nano scale. Scripta Mater. 49, 155 2003

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Army Research Office (No. DAAD19-03-1-0213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Barsoum, M.W. Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress–strain curves. Journal of Materials Research 22, 2470–2477 (2007). https://doi.org/10.1557/jmr.2007.0305

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0305

Navigation