Skip to main content

Advertisement

Log in

Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The photophysical properties of MSnO3 (M = Ca, Sr, and Ba) including optical absorption, photoluminescence, and energy band structure including band edge positions were investigated experimentally and theoretically in association with their photocatalytic properties. Photocatalytic reactions for H2 and O2 evolution in the case of sacrificial reagents were performed under ultraviolet (UV) light irradiation. The order of the activities of H2 evolution was CaSnO3 > SrSnO3 > BaSnO3, agreeing not only with that of the conduction-band edges (or band gaps) but also with that of the transferred excitation energy, while that of O2 evolution was CaSnO3 < SrSnO3 < BaSnO3, consistent with that of the angle of the Sn–O–Sn bonds as well as the delocalization of excited energy. When loaded with RuO2 cocatalyst, both CaSnO3 and SrSnO3 can efficiently split pure water into hydrogen and oxygen in a stoichiometric ratio under UV light irradiation. In addition, RuO2-loaded SrSnO3 showed higher water splitting activity than RuO2-loaded CaSnO3 did. This is attributed to the suitable conduction and valence band edges and to high mobility of the photogenerated charge carriers caused by the proper distortion of SnO6 connection in SrSnO3. The RuO2-loaded BaSnO3 photocatalyst cannot split pure water, which might be because of a high concentration of defect centers such as Sn2+ ions and the probability of radiative recombination in BaSnO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
TABLE II.
FIG. 7
FIG. 8
TABLE III.
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. A. Fujishima K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 1972

    Article  CAS  Google Scholar 

  2. S.U.M. Khan, M. Al-Shahry W.B. Ingler: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 2002

    Article  CAS  Google Scholar 

  3. Z. Zou, J. Ye, K. Sayama H. Arakawa: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625 2001

    Article  CAS  Google Scholar 

  4. H. Kato, K. Asakura A. Kudo: Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082 2003

    Article  CAS  Google Scholar 

  5. R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi Y. Nakato: Molecular mechanisms of photo-induced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-(rutile) surfaces in aqueous acidic solutions. J. Am. Chem. Soc. 127, 12975 2005

    Article  CAS  Google Scholar 

  6. Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo H. Kato: Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts. J. Solid State Chem. 177, 4205 2004

    Article  CAS  Google Scholar 

  7. A. Kudo: Development of photocatalyst materials for water splitting with the aim at photon energy conversion. J. Ceram. Soc. Jpn. 109, S81 2001

    Article  CAS  Google Scholar 

  8. A. Kudo, H. Kato I. Tsuji: Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem. Lett. (Jpn.). 33, 1534 2004

    Article  CAS  Google Scholar 

  9. K. Domen, J.N. Kondo, M. Hara T. Takata: Photo- and mechanocatalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts. Bull. Chem. Soc. Jpn. 73, 1307 2000

    Article  CAS  Google Scholar 

  10. H. Kato A. Kudo: Water splitting into H2 and O2 on alkali tantalate photocatalyst ATaO3 (A = Li, Na, K). J. Phys. Chem. B 105, 4285 2001

    Article  CAS  Google Scholar 

  11. H. Kato, H. Kobayashi A. Kudo: Role of Ag+ ions for band structure and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J. Phys. Chem. B 106, 12441 2002

    Article  CAS  Google Scholar 

  12. A. Kudo, H. Kato S. Nakagawa: Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structure: Factors affecting the photocatalytic activity. J. Phys. Chem. B 104, 571 2000

    Article  CAS  Google Scholar 

  13. M. Machida, J. Yabunaka T. Kijima: Synthesis and photocatalytic property of layered perovskite tantalates, RbLnTa2O7 (Ln = La, Pr, Nd, and Sm). Chem. Mater. 12, 812 2000

    Article  CAS  Google Scholar 

  14. J. Yin, Z. Zou J. Ye: Photophysical and photocatalytic activities of a novel photocatalyst BaZn1/3Nb2/3O3. J. Phys. Chem. B 108, 12790 2004

    Article  CAS  Google Scholar 

  15. W.F. Zhang, J. Tang J. Ye: Photoluminescence and photocatalytic properties of SrSnO3 perovskite. Chem. Phys. Lett. 418, 174 2006

    Article  CAS  Google Scholar 

  16. D.E. Scaife: Oxide semiconductors in photoelectrochemical conversion of solar energy. Solar Energy 25, 41 1980

    Article  CAS  Google Scholar 

  17. H.W. Eng, P.W. Barnes, B.M. Auer P.M. Woodward: Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family. J. Solid State Chem. 175, 94 2003

    Article  CAS  Google Scholar 

  18. A. Kumar, R.N.R. Choudhary, B.R. Singh A.K. Thakur: Effect of strontium concentration on electrical conduction properties of Sr-modified BaSnO3. Ceram. Int. 32, 73 2006

    Article  CAS  Google Scholar 

  19. H. Mizoguchi, H.W. Eng P.M. Woodward: Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5+. Inorg. Chem. 43, 1667 2004

    Article  CAS  Google Scholar 

  20. H. Mizoguchi, P.M. Woodward, C.H. Park D.A. Keszler: Strong near-infrared luminescence in BaSnO3. J. Am. Chem. Soc. 126, 9796 2004

    Article  CAS  Google Scholar 

  21. E.H. Mountstevens, J.P. Attfield S.A.T. Redfern: Cation-size control of structural phase transitions in tin perovskites. J. Phys. Condens. Matter 15, 8315 2003

    Article  CAS  Google Scholar 

  22. E.H. Mountstevens, S.A.T. Redfern J.P. Attfield: Order-disorder octahedral tilting transition in SrSnO3 perovskite. Phys. Rev. B 71, 220102 2005

    Article  Google Scholar 

  23. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias J.D. Joannopoulos: Iterative minimization techniques for abinitio total-energy calculations: molecular-dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 1992

    Article  CAS  Google Scholar 

  24. A. Vegas, M. Vallet-Regí, J.M. González-Calbet M.A. Alario-Franco: The ASnO3 (A = Ca, Sr) perovskites. Acta Crystallogr. B 42, 167 1986

    Article  Google Scholar 

  25. M.A. Green, K. Prassides, P. Day D.A. Neumann: Structure of the n=2 and n=∞ member of the ruddlesden-popper compounds, Sr(n+1)Sn(n)O3(n+1). Int. J. Inorg. Mater. 2, 35 2000

    Article  CAS  Google Scholar 

  26. A.J. Smith J.E. Welch: Some mixed metal oxides of perovskite structure. Acta Crystallogr. 13, 653 1960

    Article  CAS  Google Scholar 

  27. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 1976

    Article  Google Scholar 

  28. H. Zheng, I.M. Reaney, G.D.C. Csete de Györgyfalva, R. Ubic, J. Yarwood, M.P. Seabra V.M. Ferreira: Raman spectroscopy of CaTiO3-based perovskite solid solutions. J. Mater. Res. 19, 488 2004

    Article  CAS  Google Scholar 

  29. H. Zheng, H. Bagshaw, G.D.C. Csete de Györgyfalva, I.M. Reaney, R. Ubic J. Yarwood: Raman spectroscopy and microwave properties of CaTiO3-based ceramics. J. Appl. Phys. 94, 2948 2003

    Article  CAS  Google Scholar 

  30. M.A. Butler: Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48, 1914 1977

    Article  CAS  Google Scholar 

  31. M. Wiegel, M.H.J. Emond, E.R. Stobbe J. Blasse: Luminescence of alkali tantalates and niobates. J. Phys. Solids 55, 773 1994

    Article  CAS  Google Scholar 

  32. M.A. Butler D.S. Ginley: Prediction of flatband potentials at semiconductor-electrolyte interface from atomic electronegativitics. J. Electrochem. Soc. 125, 228 1978

    Article  CAS  Google Scholar 

  33. A.H. Nethercot: Prediction of fermi energies and photoelectric thresholds based on electronegativity Concepts. Phys. Rev. Lett. 33, 1088 1974

    Article  CAS  Google Scholar 

  34. Y. Kim, S.J. Atherton, E.S. Brigham T.E. Mallouk: Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J. Phys. Chem. 97, 11802 1993

    Article  CAS  Google Scholar 

  35. R.G. Parr R.G. Pearson: Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512 1983

    Article  CAS  Google Scholar 

  36. R.G. Pearson: Chemical Hardness: Applications from Molecules to Solid. Wiley-VCH, Verlag, Weinheim, Germany 1997 38

    Book  Google Scholar 

  37. K.E. Karakitsou X.E. Verykios: Influence of catalyst parameters and operational variables on the photocatalytic cleavage of water. J. Catal. 134, 629 1992

    Article  CAS  Google Scholar 

  38. Y. Oosawa, R. Takahashi, M. Yonemura, T. Sekine Y. Goto: Photocatalytic hydrogen evolution and oxygen evolution over ternary titanate and relationship between physical properties and kinetic properties. N. J. Chem. 13, 435 1989

    CAS  Google Scholar 

  39. J. Yin, Z. Zou J. Ye: Possible role of lattice dynamics in the photocatalytic activity of BaM1/3N2/3O3 (M = Ni, Zn; N = Nb, Ta). J. Phys. Chem. B 108, 8888 2004

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Dr. Jiang Yin, Dr. Dafa Wang, and Dr. Weifeng Yao for their helpful discussions. One of the authors (W. Zhang) thanks the financial support from the Japan Society for the Promotion of Science (JSPS). This work was partially supported by the Global Environment Research Fund and a Grant-in-Aid for Scientific Research on Priority Areas (417) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Tang, J. & Ye, J. Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts. Journal of Materials Research 22, 1859–1871 (2007). https://doi.org/10.1557/jmr.2007.0259

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0259

Navigation