Skip to main content
Log in

An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An in situ electrical measurement technique for the investigation of nanoindentation using a Hysitron Triboindenter is described, together with details of experiments to address some technical issues associated with the technique. Pressure-induced phase transformations in silicon during indentation are of particular interest but are not fully understood. The current in situ electrical characterization method makes use of differences in electrical properties of the phase-transformed silicon to better understand the sequence of transformations that occur during loading and unloading. Here, electric current is measured through the sample/indenter tip during indentation, with a fixed or variable voltage applied to the sample. This method allows both current monitoring during indentation and the extraction of current-voltage (I-V) characteristics at various stages of loading. The work presented here focuses on experimental issues that must be understood for a full interpretation of results from nanoindentation experiments in silicon. The tip/sample contact and subsurface electrical resistivity changes dominate the resultant current measurement. Extracting the component of contact resistance provides an extremely sensitive method for measuring the electrical properties of the material immediately below the indenter tip, with initial results from indentation in silicon showing that this is a very sensitive probe of subsurface structural and electrical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.Z. Hu, L.D. Merkle, C.S. Menoni, and I.L. Spain: Crystal data for high-pressure phases of silicon. Phys. Rev. B 34, 4679 (1986).

    Article  CAS  Google Scholar 

  2. R.O. Piltz, J.R. Maclean, S.J. Clark, G.J. Auckland, P.D. Hatton, and J. Crain: Structure and properties of silicon XII: A complex tetrahedrally bonded phase. Phys. Rev. B 52, 4072 (1995).

    Article  CAS  Google Scholar 

  3. J. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, and G.S. Pawley: Reversible pressure-induced structural transitions between metastable phases of silicon. Phys. Rev. B 50, 13043 (1994).

    Article  CAS  Google Scholar 

  4. V. Domnich, Y. Gogotsi, and S. Dub: Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214 (2000).

    Article  CAS  Google Scholar 

  5. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, and P. Munroe: Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16, 1500 (2001).

    Article  CAS  Google Scholar 

  6. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, and P. Munroe: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett. 77, 3749 (2000).

    Article  CAS  Google Scholar 

  7. D.R. Clarke, M.C. Kroll, P.D. Kirchner, R.F. Cook, and B.J. Hockey: Amorphization and conductivity of silicon and germanium induced by indentation. Phys. Rev. Lett. 60, 2156 (1988).

    Article  CAS  Google Scholar 

  8. A. Kailer, Y.G. Gogotsi, and K.G. Nickel: Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057 (1997).

    Article  CAS  Google Scholar 

  9. J.E. Bradby, J.S. Williams, and M.V. Swain: In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B67, 085205 (2003).

    Article  Google Scholar 

  10. G.M. Pharr, W.C. Oliver, and D.S. Harding: New evidence for a pressure-induced phase transformation during the indentation of silicon. J. Mater. Res. 6, 1129 (1991).

    Article  CAS  Google Scholar 

  11. G.M. Pharr, W.C. Oliver, R.F. Cook, P.D. Kirchner, M.C. Kroll, T.R. Dinger, and D.R. Clarke: Electrical resistance of metallic contacts on silicon and germanium during indentation. J. Mater. Res. 7, 961 (1992).

    Article  CAS  Google Scholar 

  12. E.R. Weppelmann, J.S. Field, and M.V. Swain: Observation, analysis, and simulation of the hysteresis of silicon using ultra-micro-indentation with spherical indenters. J. Mater. Res. 8, 830 (1993).

    Article  CAS  Google Scholar 

  13. J.S. Williams, Y. Chen, J. Wong-Leung, A. Kerr, and M.V. Swain: Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters. J. Mater. Res. 14, 2338 (1999).

    Article  CAS  Google Scholar 

  14. Y.G. Gogotsi, V. Domnich, S.N. Dub, A. Kailer, and K.G. Nickel: Cyclic nanoindentation and Raman microspectroscopy study of phase transformations in semiconductors. J. Appl. Phys. 15, 871 (2000).

    CAS  Google Scholar 

  15. A.B. Mann, D. van Heerden, J.B. Pethica, P. Bowes, and T.P. Weihs: Contact resistance and phase transformations during nanoindentation of silicon. Philos. Mag. A. 82, 1921 (2002).

    Article  CAS  Google Scholar 

  16. A.B. Mann, D. van Heerden, J.B. Pethica, and T.P. Weihs: Size dependent phase transformation during point loading of silicon. J. Mater. Res. 15, 1754 (2000).

    Article  CAS  Google Scholar 

  17. Hysitron Incorporated: Quoted Tip Resistivity (Hysitron, Inc., Minneapolis, MN, 2005).

  18. E.H. Rhoderickand R.H. Williams: Metal-Semiconductor Contacts (Oxford University Press, Oxford, UK, 1988).

    Google Scholar 

  19. A.C. Fischer-Cripps: Nanoindentation Mechanical Engineering Series (Springer-Verlag: New York, 2004).

    Book  Google Scholar 

  20. G.L. Pearson: Pressure dependence of the resistivity of silicon. Phys. Rev. 98, 1755 (1955).

    Article  Google Scholar 

  21. T.Y. Zhangand W.H. Xu: Surface effects on nanoindentation. J. Mater. Res. 17, 1715 (2002).

    Article  Google Scholar 

  22. B. Bhushanand X. Li: Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J. Mater. Res. 12, 59 (1997).

    Google Scholar 

  23. Private communication, Hysitron Incorporated.

  24. J-i. Jang, M.J. Lance, S. Wen, T.Y. Tsui, and G.M. Pharr: Indentation-induced phase transformations in silicon: Influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53, 1759 (2005).

    Article  CAS  Google Scholar 

  25. Y. Gogotsi, T. Miletich, M. Gardner, and M. Rosenberg: Microindentation device for in situ study of pressure-induced phase transformations. Rev. Sci. Instrum. 70, 4612 (1999).

    Article  CAS  Google Scholar 

  26. M. Werner, R. Job, A. Denisenko, A. Zaitsev, W.R. Fahrner, C. Johnston, P.R. Chalker, and I.M. Buckley-Golder: How to fabricate low-resistance metal-diamond contacts. Diamond Relat. Mater. 5, 723 (1996).

    Article  CAS  Google Scholar 

  27. Y. Chen, M. Ogura, S. Yamasaki, and H. Okushi: Ohmic contacts on p-type homoepitaxial diamond and their thermal stability. Semicond. Sci. Technol. 20, 860 (2005).

    Article  CAS  Google Scholar 

  28. C. Uzan-Saguy, R. Kalish, R. Walker, D.N. Jamieson, and S. Prawer: Formation of delta-doped, buried conducting layers in diamond, by high-energy, B-ion implantation. Diamond Relat. Mater. 7, 1429 (1998).

    Article  CAS  Google Scholar 

  29. A.T. Collins: Properties and Growth of Diamond edited by G. Davies (Inspec: London, 1994), p. 273.

  30. S. Jeffery, C.J. Sofield, and J.B. Pethica: The influence of mechanical stress on the dielectric breakdown field strength of thin SiO2 films. Appl. Phys. Lett. 73, 172 (1998).

    Article  CAS  Google Scholar 

  31. S.A. Syed Asif, K.J. Wahl, and R.J. Colton: The influence of oxide and adsorbates on the nanomechanical response of silicon surfaces. J. Mater. Res. 15, 546 (2000).

    Article  CAS  Google Scholar 

  32. R. Hsiaoand D. Bogy: Nanoindentation Characteristics of Silicon: Application Notes (Hysitron Incorporated, Minneapolis, MN, 2003).

    Google Scholar 

  33. T. Juliano, V. Domnich, and Y. Gogotsi: Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: A statistical study. J. Mater. Res. 19, 3099 (2004).

    Article  CAS  Google Scholar 

  34. T. Juliano, Y. Gogotsi, and V. Domnich: Effect of indentation unloading conditions on phase transformation induced events in silicon. J. Mater. Res. 18, 1192 (2003).

    Article  CAS  Google Scholar 

  35. S. Ruffell, J.E. Bradby, and J.S. Williams: Identification of nanoindentation-induced phase changes in silicon by in-situ electrical characterization. J. Appl. Phys. (2007, submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ruffell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruffell, S., Bradby, J.E., Williams, J.S. et al. An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. Journal of Materials Research 22, 578–586 (2007). https://doi.org/10.1557/jmr.2007.0100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0100

Navigation