Skip to main content
Log in

A nanoindentation study on grain-boundary contributions to strengthening and aging degradation mechanisms in advanced 12 Cr ferritic steel

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation experiments and microstructural analysis were performed on advanced 12% Cr ferritic steel having extremely fine and complex martensitic microstructures, to answer unsolved questions on the contributions of grain boundaries to strengthening and aging degradation mechanisms in both as-tempered and thermally aged steels. Interesting features of the experimental results led us to suggest that among several high angle boundaries, block boundary is most effective in enhancing the macroscopic strength in as-tempered virgin sample, and that a decrease in matrix strength rather than reduction in grain-boundary strengthening effect is primarily responsible for the macroscopic softening behavior observed during thermal exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Klueh: Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int. Mater. Rev. 50, 287 (2005).

    Article  CAS  Google Scholar 

  2. G. Krauss: Martensite in steel: Strength and structure. Mater. Sci. Eng., A 273–275, 40 (1999).

    Article  Google Scholar 

  3. G.E. Dieter: Mechanical Metallurgy (McGraw-Hill, UK, 1988) p. 184.

    Google Scholar 

  4. J.M. Marder and A.R. Marder: The morphology of iron-nickel massive martensite. Trans. ASM 62, 1 (1969).

    CAS  Google Scholar 

  5. T. Maki, K. Tsuzaki, and I. Tamura: The morphology of microstructure composed of lath martensites in steels. Trans. ISIJ 20, 207 (1980).

    Article  CAS  Google Scholar 

  6. J.W. Morris Jr., Z. Guo, C.R. Krenn, and Y.H. Kim: The limits of strength and toughness in steel. ISIJ Int. 41, 599 (2001).

    Article  CAS  Google Scholar 

  7. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  8. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  9. T. Ohmura, K. Tsuzaki, and S. Matsuoka: Nanohardness measurement of high-purity Fe-C martensite. Scripta Mater. 45, 889 (2001).

    Article  CAS  Google Scholar 

  10. T. Ohmura, T. Hara, and K. Tsuzaki: Relationship between nanohardness and microstructures in high-purity Fe-C as-quenched and quench-tempered martensite. J. Mater. Res. 18, 1465 (2003).

    Article  CAS  Google Scholar 

  11. T. Ohmura, T. Hara, and K. Tsuzaki: Evaluation of temper softening behavior of Fe-C binary martensitic steels by nanoindentation. Scripta Mater. 49, 1157 (2003).

    Article  CAS  Google Scholar 

  12. J. Li, T. Ohmura, and K. Tzsuzaki: Evaluation of grain boundary effect on strength of Fe-C low alloy martensitic steels by nanoindentation technique. Mater. Trans. 46, 1301 (2005).

    Article  CAS  Google Scholar 

  13. K. Sawada, K. Miyahara, H. Kushima, K. Kimura, and S. Matsuoka: Contribution of microstructural factors to hardness change during creep exposure in mod. 9Cr-1Mo steel. ISIJ Int. 45, 1934 (2005).

    Article  CAS  Google Scholar 

  14. F. Masuyama and N. Komai: Long-term creep rupture strength of tungsten-strengthened advanced 9–12% Cr steels. Key Eng. Mater. 171–174, 179 (2000).

    Google Scholar 

  15. S. Komazaki, T. Hashida, T. Shoji, and K. Suzuki: Development of small punch tests for creep property measurement of tungsten-alloyed 9% Cr ferritic steels. J. Test. Eval. 28, 249 (2000).

    Article  Google Scholar 

  16. H. Kutsumi, A. Chino, and Y. Ishibashi: Quantitative analysis of laves phase and carbide in high Cr heat-resistance ferritic steels. Tetsu to Hagane 78, 5941992 in Japanese.

    Article  CAS  Google Scholar 

  17. R. Ishii, Y. Tsuda, K. Fujiyama, K. Kimura, and K. Saito: Creep damage estimation based on the softening behavior of 10Cr-1Mo-1W-VNbN steel. Tetsu to Hagane 89, 6992003 in Japanese.

    Article  CAS  Google Scholar 

  18. K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, and R. Komine: Effect of W on recovery of lath structure during creep of high chromium martensite steels. Mater. Sci. Eng. A 267, 19 (1999).

    Article  Google Scholar 

  19. M. Kimura, K. Yamaguchi, M. Hayakawa, and K. Kobayashi: Microstructure and grain boundary precipitates in 9-12% Cr ferritic heat-resisting steels. Tetsu to Hagane 90, 272004 in Japanese.

    Article  CAS  Google Scholar 

  20. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  21. H. Gao and Y. Huang: Geometrically necessary dislocation and size-dependent plasticity. Scripta Mater. 48, 113 (2003).

    Article  CAS  Google Scholar 

  22. K.L. Johnson: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  23. M. Yamada, O. Watanabe, Y. Yoshioka, and M. Miyazaki: Development of advanced 12Cr steel rotor forgings. Tetsu to Hagane 76, 10841990 in Japanese.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Komazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, J., Shim, S., Komazaki, S. et al. A nanoindentation study on grain-boundary contributions to strengthening and aging degradation mechanisms in advanced 12 Cr ferritic steel. Journal of Materials Research 22, 175–185 (2007). https://doi.org/10.1557/jmr.2007.0009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0009

Navigation