Skip to main content

Advertisement

Log in

Transparent-conducting, gas-sensing nanostructures (nanotubes, nanowires, and thin films) of titanium oxide synthesized at near-ambient conditions

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A template-based, electroless wet-chemical method for synthesis of nanotubes and nanowires of nanocrystalline anatase titanium oxide (titania) at 45 °C is reported. Single-nanowire electrical property measurements reveal low dc resistivities (7–21 × 10−4 Ω cm) in these titania nanowires. In the presence of 1000 parts per million of CO gas at 100 °C, the resistivity is found to increase reversibly, indicating low-temperature gas-sensing capability in these titania nanowires. Thin films of nanocrystalline anatase titania, deposited using a similar wet-chemical method, also have low room-temperature dc resistivities (6–8 × 10−3 Ω cm), and they are transparent to visible light. Nanostructure-properties relations, together with possible electrical conduction, optical absorption, and gas-sensing mechanisms, are discussed. The ability to fashion transparent-conducting and gas-sensing nanocrystalline anatase titania into nanotubes/nanowires and thin films at near-ambient conditions could open a wider field of applications for titania, including nanoelectronics, chemical sensing, solar cells, large-area windows and displays, invisible security circuits, and incorporation of biomolecules and temperature-sensitive moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, K. Hashimoto, T. Watanabe: TiO2Photocatalysis: Fundamentals and Applications (BKC Inc., Tokyo, Japan, 1999).

    Google Scholar 

  2. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).

    Article  CAS  Google Scholar 

  3. M. Grätzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Article  Google Scholar 

  4. C.O. Park, S.A. Akbar: Ceramics for chemical sensing. J. Mater. Sci. 38, 4611 (2003).

    Article  CAS  Google Scholar 

  5. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 (2003).

    Article  CAS  Google Scholar 

  6. A. Hagfeldt, N. Vlachopoulos, M. Grätzel: Fast electrochromic switching with nanocrystalline oxide semiconductor films. J. Electrochem. Soc. 141L82 (1994).

    Article  CAS  Google Scholar 

  7. E. Topoglidis, A.E.G Cass, B. O’Regan, J.R. Durrant: Immobilisation and biochemistry of proteins on nanoporous TiO2 and ZnO films. J. Electroanal. Chem. 517, 20 (2001).

    Article  CAS  Google Scholar 

  8. J. Li, G.W. Hastings: Oxide ceramics: Inert ceramic materials in medicine and dentistry, in Handbook of Biomaterials Properties, edited by J. Black, G.W. Hastings (Chapman & Hall, London, 1998), p. 340.

  9. A. Bendavid, P.J. Martin, A. Jamting, H. Takikawa: Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition. Thin Solid Films 356, 6 (1999).

    Article  Google Scholar 

  10. R.C. Buchanan: Ceramic Materials for Electronics (Marcel Dekker, New York, 1991).

    Google Scholar 

  11. P. Knauth, H.L. Tuller: Electrical and defect thermodynamic properties of nanocrystalline titanium oxide. J. Appl. Phys. 85, 897 (1999).

    Article  CAS  Google Scholar 

  12. R. v. d. Krol, H.L. Tuller: Electroceramics: The role of interfaces. Solid State Ionics 150, 167 (2002).

    Article  Google Scholar 

  13. S.R. Kurtz, R.G. Gordon: Chemical vapor deposition of doped TiO2 thin films. Thin Solid Films 147, 167 (1987).

    Article  CAS  Google Scholar 

  14. Z.L. Wang: Nanowires and Nanobelts: Materials, Properties and Devices (Kluwer Academic Publishers, New York, 2003).

    Book  Google Scholar 

  15. C.M. Lieber: Nanoscale science and technology: Building big future from small things. MRS Bull. 28, 486 (2003).

    Article  CAS  Google Scholar 

  16. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).

    Article  CAS  Google Scholar 

  17. A. Kolmakov, M. Moskovits: Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Sci. 34, 151 (2004).

    Article  CAS  Google Scholar 

  18. J.S. Tresback, A.L. Vasiliev, N.P. Padture: Engineered metal-oxide-metal heterojunction nanowires. J. Mater. Res. 20, 2613 (2005).

    Article  CAS  Google Scholar 

  19. J.J. Shyue, N.P. Padture: Template-directed, near-ambient synthesis of Au-TiO2-Au heterojunction nanowires mediated by self-assembled monolayers (SAMs). Mater. Lett. (2006, in press) doi: 10.1016/j.matlet.2006.04.100.

    Google Scholar 

  20. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).

    Article  CAS  Google Scholar 

  21. Z.Y. Yuan, B.L. Su: Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf., A 241, 173 (2004).

    Article  CAS  Google Scholar 

  22. H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima: Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9, 2971 (1999).

    Article  CAS  Google Scholar 

  23. J.C. Hulteen, C.R. Martin: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).

    Article  CAS  Google Scholar 

  24. A. Michailowski, D. AlMawlawi, G. Cheng, M. Moskovits: Highly regular anatase nanotuble arrays fabricated in porous anodic template. Chem. Phys. Lett. 349, 1 (2001).

    Article  CAS  Google Scholar 

  25. Z. Miao, D.S. Xu, J.H. Ouyang, G.L. Guo, X.S. Zhao, Y.Q. Tang: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717 (2002).

    Article  CAS  Google Scholar 

  26. S.L. Limmer, G.Z. Cao: Sol-gel electrophoretic deposition for the growth of oxide nanorods. Adv. Mater. 15, 427 (2003).

    Article  CAS  Google Scholar 

  27. X.Y. Zhang, B.D. Yao, L.X. Zhao, C.H. Liang, L.D. Zhang, Y.Q. Mao: Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays. J. Electrochem. Soc. 148G398 (2001).

    Article  CAS  Google Scholar 

  28. Y. Lei, L.D. Zhang, J.C. Fan: Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett. 338, 231 (2001).

    Article  CAS  Google Scholar 

  29. S. Liu, K. Huang: Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Sol. Energy Mater. 85, 125 (2005).

    CAS  Google Scholar 

  30. S.K. Pradhan, P.J. Reucroft, F.Q. Yang, A. Dozier: Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).

    Article  CAS  Google Scholar 

  31. B. Xiang, Y. Zhang, Z. Wang, X.H. Luo, Y.W. Zhu, H.Z. Zhang, D.P. Yu: Field-emission properties of TiO2 nanowire arrays. J. Appl. Phys. D38, 1152 (2005).

    Google Scholar 

  32. H. Lin, H. Kozuka, T. Yoko: Electrical properties of transparent doped oxide films. J. Sol-Gel Sci. Technol. 19, 529 (2000).

    Article  Google Scholar 

  33. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa: A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 252101 (2005).

    Article  CAS  Google Scholar 

  34. T. Hitosugi, Y. Furubayashi, A. Ueda, K. Itabashi, K. Inaba, Y. Hirose, G. Kinoda, Y. Yamamoto, T. Shimada, T. Hasegawa: Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide. Jpn. J. Appl. Phys. 44L1063 (2005).

    Article  CAS  Google Scholar 

  35. R.G. Gordon: Criteria for choosing transparent conductors. MRS Bull. 25, 52 (2000).

    Article  CAS  Google Scholar 

  36. K. Ellmer: Resistivity of polycrystalline zinc oxide films: Current status and physical limits. J. Phys. D: Appl. Phys. 34, 3097 (2001).

    Article  CAS  Google Scholar 

  37. C.G. Granqvist, A. Hultaker: Transparent and conducting ITO films: New developments and applications. Thin Solid Films 411, 1 (2002).

    Article  CAS  Google Scholar 

  38. Y. Masuda, T. Sugiyama, W.S. Seo, K. Koumoto: Deposition mechanism of anatase TiO2 on self-assembled monolayers from an aqueous solution. Chem. Mater. 15, 2469 (2003).

    Article  CAS  Google Scholar 

  39. A. Ishimaru: Wave Propagation and Scattering in Random Media (John Wiley & Sons, Inc., New York, 1999).

    Book  Google Scholar 

  40. V. Gopal, V.R. Radmilovic, C. Daraio, S. Jin, P.D. Yang, E.A. Stach: Rapid prototyping of site-specific nanocontacts by electron and ion beam assisted direct-write nanolithography. Nano Lett. 4, 2059 (2004).

    Article  CAS  Google Scholar 

  41. J.S. Reed: Principles of Ceramics Processing, 2nd ed. (John Wiley & Sons, New York, 1995).

    Google Scholar 

  42. S. Deki, Y. Aoi, O. Hiroi, A. Kajinami: Titanium (IV) oxide thin films prepared from aqueous solution. Chem. Lett. (Jpn.) 6, 433 (1996).

    Article  Google Scholar 

  43. H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, S. Deki: Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD). J. Mater. Chem. 8, 2019 (1998).

    Article  CAS  Google Scholar 

  44. E. Comini, G. Faglia, G. Sberveglieria, Z. Pan, Z.L. Wang: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).

    Article  CAS  Google Scholar 

  45. Q. Wan, Q.H.L Qh, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654 (2004).

    Article  CAS  Google Scholar 

  46. A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits: Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997 (2003).

    Article  CAS  Google Scholar 

  47. C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou: In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 82, 1613 (2003).

    Article  CAS  Google Scholar 

  48. C. Yu, Q. Hao, S. Saha, L. Shi, X.K. Kong, Z.L. Wang: Integration of metal oxide nanobelts with microsystems for nerve detection. Appl. Phys. Lett. 86, 63101 (2005).

    Article  CAS  Google Scholar 

  49. Z.Y. Fan, J.G. Lu: Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 86, 123510 (2005).

    Article  CAS  Google Scholar 

  50. O.K. Varghese, G.K. Mor, C.A. Grimes, M. Paulose, N. Mukherjee: A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol. 4, 733 (2004).

    Article  CAS  Google Scholar 

  51. M. Jobin, M. Taborelli, P. Descouts: Structural characterization of oxidized titanium surfaces. J. Appl. Phys. 77, 5149 (1995).

    Article  CAS  Google Scholar 

  52. C. Viornery, Y. Chevolot, D. Leonard, B.O. Aronsson, P. Pechy, H.J. Mathieu, P. Descouts, M. Grätzel: Surface modification of titanium with phosphonic acid to improve bone bonding: Characterization by XPS and ToF-SIMS. Langmuir 18, 2582 (2002).

    Article  CAS  Google Scholar 

  53. K. Cai, M. Muller, J. Bosset, A. Rechtenbach, K.D. Jandt: Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate. Appl. Surf. Sci. 250, 252 (2005).

    Article  CAS  Google Scholar 

  54. A. Razgon, C.N. Sukenik: Ceramic coatings for fiber matrix composites: Titania thin film on bismaleimide-glass fiber composites. J. Mater. Res. 20, 2544 (2005).

    Article  CAS  Google Scholar 

  55. T.P. Niesen, M.R. DeGuire: Review: Deposition of ceramic thin films at low temperatures from aqueous solutions. J. Electroceram. 6, 169 (2001).

    Article  CAS  Google Scholar 

  56. J. Singh, K. Shimakawa: Advances in Amorphous Semiconductors (CRC Press, Boca Raton, FL, 2003).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Jong Shyue.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shyue, JJ., Cochran, R.E. & Padture, N.P. Transparent-conducting, gas-sensing nanostructures (nanotubes, nanowires, and thin films) of titanium oxide synthesized at near-ambient conditions. Journal of Materials Research 21, 2894–2903 (2006). https://doi.org/10.1557/jmr.2006.0352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0352

Navigation