Skip to main content
Log in

Mechanical properties of nacre constituents and their impact on mechanical performance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical properties of nacre constituents from red abalone were investigated. Electron microscopy studies revealed that the tablets are composed of single-crystal aragonite with nanograin inclusions. Both nanoasperities and aragonite bridges are present within the interfaces between the tablets. By means of nanoindentation and axial compression tests, we identified single tablet elastic and inelastic properties. The elastic properties are very similar to those of single-crystal aragonite. However, their strength is higher than previously reported values for aragonite. A finite element model of the interface accounting for nanoasperities and the identified properties revealed that the nanoasperities are strong enough to withstand climbing and resist tablet sliding, at least over the initial stages of deformation. Furthermore, it was observed that the model over-predicts strength and under-predicts ductility. Therefore, we conclude that other interface features must be responsible for the enhanced performance of nacre over its constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sarikaya, I.A. Aksay: Biomimetics, design and processing of materials, in Polymers and Complex Materials edited by M. Sarikaya and I. Aksay, (AIP, Woodbury, NY, 1995).

  2. G. Mayer: Rigid biological systems as models for synthetic composites. Science 310, 1144 (2005).

    Article  CAS  Google Scholar 

  3. Q.L. Feng, F.Z. Cui, G. Pu, R.Z. Wang, H.D. Li: Crystal orientation, toughening mechanisms and a mimic of nacre. Mater. Sci. Eng., C—Biomimetic Supramolecular Syst. 11, 19 (2000).

    Article  Google Scholar 

  4. E. DiMasi, M. Sarikaya: Synchrotron x-ray microbeam diffraction from abalone shell. J. Mater. Res. 19, 1471 (2004).

    Article  CAS  Google Scholar 

  5. X.D. Li, W.C. Chang, Y.J. Chao, R.Z. Wang, M. Chang: Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 4, 613 (2004).

    Article  CAS  Google Scholar 

  6. A.M. Belcher, X.H. Wu, R.J. Christensen, P.K. Hansma, G.D. Stucky, D.E. Morse: Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56 (1996).

    Article  CAS  Google Scholar 

  7. J.D. Currey: Mechanical properties of mother of pearl in tension. Proc. R. Soc. London 196, 443 (1977).

    Google Scholar 

  8. A.P. Jackson, J.F.V Vincent, R.M. Turner: The mechanical design of nacre. Proc. R. Soc. London 234, 415 (1988).

    Google Scholar 

  9. R.Z. Wang, H.B. Wen, F.Z. Cui, H.B. Zhang, H.D. Li: Observations of damage morphologies in nacre during deformation and fracture. J. Mater. Sci. 30, 2299 (1995).

    Article  CAS  Google Scholar 

  10. R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, I.A. Aksay: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2001).

    Article  CAS  Google Scholar 

  11. R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio: Quasi-static and dynamic mechanical response of haliotis rufescens (abalone) shells. Acta Mater. 48, 2383 (2000).

    Article  CAS  Google Scholar 

  12. D.R. Katti, K.S. Katti, J.M. Sopp, M. Sarikaya: 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites. Comp. Theor. Polym. Sci. 11, 397 (2001).

    Article  CAS  Google Scholar 

  13. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  14. J.F. Bruet, H.J. Qi, M.C. Boyce, R. Panas, K. Tai, L. Frick, C. Ortiz: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400 (2005).

    Article  CAS  Google Scholar 

  15. B.L. Smith, T.E. Schaeffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, P.K. Hansma: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761 (1999).

    Article  CAS  Google Scholar 

  16. A.G. Evans, Z. Suo, R.Z. Wang, I.A. Aksay, M.Y. He, J.W. Hutchinson: A model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475 (2001).

    Article  CAS  Google Scholar 

  17. K. Okumura, P.G. de Gennes: Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures. Eur. Phys. J. E. 4, 121 (2001).

    Article  CAS  Google Scholar 

  18. F. Barthelat and H.D. Espinosa: Mechanical properties of nacre constituents: An inverse method approach, in Mechanical Properties of Bioinspired and Biological Materials edited by C. Viney, K. Katti, F.J. Ulm, and C. Hellmich (Mater. Res. Soc. Symp. Proc. 844, Warrendale, PA, 2005), Y7.5.

  19. T.E. Schaffer, C.I. Zanetti, R. Proksch, M. Fritz, D.A. Walters, N. Almqvist, C.M. Zaremba, A.M. Belcher, B.L. Smith, G.D. Stucky, D.E. Morse, P.K. Hansma: Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9, 1731 (1997).

    Article  Google Scholar 

  20. F. Song, A.K. Soh, Y.L. Bai: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623 (2003).

    Article  CAS  Google Scholar 

  21. B.R. Lawn: Fracture of Brittle Solids 2nd ed. (Cambridge University Press, New York, 1993), pp. 282–295.

    Book  Google Scholar 

  22. N.A. Fleck, J.W. Hutchinson: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids. 41, 1825 (1993).

    Article  Google Scholar 

  23. R. Saha, W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  24. B. Bhushan, X.D. Li: Nanomechanical characterisation of solid surfaces and thin films. Int. Mater. Rev. 48, 125 (2003).

    Article  CAS  Google Scholar 

  25. F.S. Hearmon: The elastic constants of anisotropic materials. Rev. Mod. Phys. 18, 409 (1946).

    Article  CAS  Google Scholar 

  26. M. Levy, H. Bass, R. Stern: Handbook of Elastic Properties of Solids, Liquids and Gases (Elsevier, San Diego, CA, 2001).

    Google Scholar 

  27. Y.H. Han, H. Li, T.Y. Wong, R.C. Bradt: Knoop microhardness anisotropy of single-crystal aragonite. J. Am. Ceram. Soc. 74, 3129 (1991).

    Article  CAS  Google Scholar 

  28. H.J. Gao, B.H. Ji, I.L. Jager, E. Arzt, P. Fratzl: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. USA 100, 5597 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio D. Espinosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthelat, F., Li, CM., Comi, C. et al. Mechanical properties of nacre constituents and their impact on mechanical performance. Journal of Materials Research 21, 1977–1986 (2006). https://doi.org/10.1557/jmr.2006.0239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0239

Navigation