Skip to main content
Log in

Phase field theory of crystal nucleation and polycrystalline growth: A review

  • ArticlesOutstanding Meeting Paper
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We briefly review our recent modeling of crystal nucleation and polycrystalline growth using a phase field theory. First, we consider the applicability of phase field theory for describing crystal nucleation in a model hard sphere fluid. It is shown that the phase field theory accurately predicts the nucleation barrier height for this liquid when the model parameters are fixed by independent molecular dynamics calculations. We then address various aspects of polycrystalline solidification and associated crystal pattern formation at relatively long timescales. This late stage growth regime, which is not accessible by molecular dynamics, involves nucleation at the growth front to create new crystal grains in addition to the effects of primary nucleation. Finally, we consider the limit of extreme polycrystalline growth, where the disordering effect due to prolific grain formation leads to isotropic growth patterns at long times, i.e., spherulite formation. Our model of spherulite growth exhibits branching at fixed grain misorientations, induced by the inclusion of a metastable minimum in the orientational free energy. It is demonstrated that a broad variety of spherulitic patterns can be recovered by changing only a few model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.W. Jin, K.A. Claborn, M. Kurimoto, M.A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky and B. Kahr: Imaging linear birefringence and dichroism in cerebral amyloid pathologies. Proc. Natl. Acad. Sci. U S A 100, 15297 (2003).

    Google Scholar 

  2. Proc. Royal Soc. Discussion Meeting on Nucleation Control, edited by G.W. Greenwood, A.L. Greer, D.M. Herlach, and K.F. Kelton, Philos. Trans. 361 (2003).

  3. W.C. Swope and H.C. Andersen: 106—particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. Phys. Rev. B 41, 7042 (1990).

    Article  CAS  Google Scholar 

  4. P.R. Wolde ten and D. Frenkel: Homogeneous nucleation and the Ostwald step rule. Phys. Chem. Chem. Phys. 1, 2191 (1999).

    Article  Google Scholar 

  5. P.R. ten Wolde, M.J. Ruiz-Montero and D. Frenkel: Numerical eviedence for bcc ordering at the surface of critical fcc nucleus. Phys. Rev. Lett. 75, 2714 (1995).

    Article  Google Scholar 

  6. S. Auer and D. Frenkel: Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020 (2001).

    Article  CAS  Google Scholar 

  7. R.L. Davidchack and B.B. Laird: Direct calculation of the hard-sphere crystal/melt interfacial free energy. J. Chem. Phys. 108, 9452 (1998).

    Article  CAS  Google Scholar 

  8. D.W. Oxtoby: Density-functional methods in the statistical mechanics of materials. Annu. Rev. Mater. Res. 32, 39 (2002).

    Article  CAS  Google Scholar 

  9. Y.C. Shen and D.W. Oxtoby: Bcc symmetry in the crystal-melt interface of Lennard-Jones fluids examined through density-functional theory. Phys. Rev. Lett. 77, 3585 (1996).

    Article  CAS  Google Scholar 

  10. L. Gránásy and D.W. Oxtoby: Cahn–Hilliard theory with triple parabolic free energy. II. Nucleation and growth in the presence of a metastable crystalline phase. J. Chem. Phys. 112, 2410 (2000).

    Article  Google Scholar 

  11. K. Lee and W. Losert: Private communication (2004).

    Google Scholar 

  12. B.D. Nobel and P.F. James: Private communication (2003).

    Google Scholar 

  13. V. Ferreiro, J.F. Douglas, J.A. Warren and A. Karim: Growth pulsation in symmetric dendritic crystallization in thin polymer blend films. Phys. Rev. E 65, 051606 (2002).

    Article  CAS  Google Scholar 

  14. G. Ryshchenkow and G. Faivre: Bulk crystallization of liquid selenium—Primary nucleation, growth-kinetics and modes of crystallization. J. Cryst. Growth 87, 221 (1988).

    Article  Google Scholar 

  15. M. Ojeda and D.C. Martin: High-resolution microscopy of PMDA-ODA poly(imide) single crystals. Macromol. 26, 6557 (1993).

    Article  CAS  Google Scholar 

  16. F.J. Padden and H.D. Keith: Crystalline morphology of synthetic polypeptides. J. Appl. Phys. 36, 2987 (1965).

    Article  CAS  Google Scholar 

  17. W.J. Boettinger, J.A. Warren, C. Beckermann and A. Karma: Phase-field simulation of solidification. Ann. Rev. Mater. Res. 32, 163 (2002).

    Article  CAS  Google Scholar 

  18. J.J. Hoyt, M. Asta and A. Karma: Atomistic and continuum modeling of dendritic solidification. Mater. Sci. Eng. Rep. R41, 121 (2003).

    Article  CAS  Google Scholar 

  19. H.D. Keith, F.J. Padden Jr.: A phenomenological theory of spherulitic crystallization. J. Appl. Phys. 34, 2409 (1963).

    Article  CAS  Google Scholar 

  20. N. Goldenfeld: Theory of spherulitic solidification. J. Cryst. Growth 84, 601 (1987).

    Article  CAS  Google Scholar 

  21. K. Nagarajan and A.S. Myerson: Molecular dynamics of nucleation and crystallization of polymers. Cryst. Growth Design 1, 131 (2005).

    Article  CAS  Google Scholar 

  22. T. Yamamoto: Molecular dynamics modeling of polymer crystallization from the melt. Polymer 45, 1357 (2004).

    Article  CAS  Google Scholar 

  23. L. Gránásy, T. Börzsönyi and T. Pusztai: Nucleation and bulk crystallization in binary phase field theory. Phys. Rev. Lett. 88, 206105 (2002).

    Article  CAS  Google Scholar 

  24. L. Gránásy, T. Pusztai, G. Tóth, Z. Jurek, M. Conti and B. Kvamme: Phase field theory of crystal nucleation in hard-sphere liquid. J. Chem. Phys. 119, 10376 (2003).

    Article  CAS  Google Scholar 

  25. L. Gránásy, T. Pusztai, J.A. Warren, T. Börzsönyi, J.F. Douglas and V. Ferreiro: Growth of ‘dizzy dendrites’ in a random field of foreign particles. Nat. Mater. 2, 92 (2003).

    Article  CAS  Google Scholar 

  26. L. Gránásy, T. Pusztai, BörzsöT. nyi, J.A. Warren and J.F. Douglas: A general mechanism of polycrystalline growth. Nat. Mater. 3, 645 (2004).

    Article  CAS  Google Scholar 

  27. L. Gránásy, T. Pusztai and J.A. Warren: Modelling polycrystalline solidification using phase field theory. J. Phys.: Condens. Matter 16, R1205 (2004).

    Google Scholar 

  28. L. Gránásy, T. Pusztai, G. Tegze, J.A. Warren and J.F. Douglas: On the growth and form of spherulites. Phys. Rev. E 72, 011605 (2005).

    Article  CAS  Google Scholar 

  29. L. Gránásy, T. Pusztai, G. Tegze, J.A. Warren, and J.F. Douglas: Polycrystalline patterns in far-from-equilibrium freezing: A phase field study. Philos. Mag. A (in press).

  30. R. Kobayashi, J.A. Warren and W.C. Carter: Vector-valued phase field model for crystallization and grain boundary formation. Physica D 119, 415 (1998).

    Article  CAS  Google Scholar 

  31. T. Pusztai, G. Bortel and L. Gránásy: Phase field theory of polycrystalline solidification in three dimensions. Europhys. Lett. 71, 131 (2005).

    Article  CAS  Google Scholar 

  32. R. Kobayashi and J.A. Warren: Modeling the formation and dynamics of polycrystals in 3D. Physica A 356, 127 (2005).

    Article  Google Scholar 

  33. R. Kobayashi and Y. Giga: Equations with singular diffusivity. J. Stat. Phys. 95, 1187 (1999).

    Article  Google Scholar 

  34. J.A. Warren, R. Kobayashi, A.E. Lobkovsky and W.C. Carter: Extending phase field models of solidification to polycrystalline materials. Acta Mater. 51, 6035 (2003).

    Article  CAS  Google Scholar 

  35. A. Roy, J.M. Rickman, J.D. Gunton and K.R. Elder: Simulation study of nucleation in a phase-field model with nonlocal interactions. Phys. Rev. E 56, 2610 (1998).

    Article  Google Scholar 

  36. K.R. Elder, F. Drolet, J.M. Kosterlitz and M. Grant: Stochastic eutectic growth. Phys. Rev. Lett. 72, 677 (1994).

    Article  CAS  Google Scholar 

  37. M. Castro: Phase-field approach to heterogeneous nucleation. Phys. Rev. B 67, 035412 (2003).

    Article  CAS  Google Scholar 

  38. A. Cacciuto, S. Auer and D. Frenkel: Solid-liquid interfacial free energy of small colloidal hard-sphere crystals. J. Chem. Phys. 119, 7467 (2003).

    Article  CAS  Google Scholar 

  39. Y. Mu, A. Houk and X. Song: Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces. J. Phys. Chem. B 109, 6500 (2005).

    Article  CAS  Google Scholar 

  40. G. Tóth Investigation of crystal nucleation in the hard sphere system. Diploma Thesis Technical University of Budapest, Hungary (2004).

    Google Scholar 

  41. S.L. Girshick and C.P. Chiu: Kinetic nucleation theory—A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. J. Chem. Phys. 93, 1273 (1990).

    Article  CAS  Google Scholar 

  42. L. Gránásy: Diffuse interface theory for homogeneous vapor condensation. J. Chem. Phys. 104, 5188 (1996).

    Article  Google Scholar 

  43. J.H. Magill: Review spherulites: A personal perspective. J. Mater. Sci. 36, 3143 (2001).

    Article  CAS  Google Scholar 

  44. F. Khoury: The spherulitic crystallization of isotatic polypropylene from solution: On the evolution of monoclinic spherulites from dendritic chain-folded precursors. J. Res. Natl. Bur. Stand. 70A, 29 (1966).

    Article  CAS  Google Scholar 

  45. A. Keller and J.R. Waring: The spherulitic structure of crystalline polymers. Part III. Geometrical factors in spherulitic growth and the fine-structure. J. Polymer Sci. 17, 447 (1955).

    Article  CAS  Google Scholar 

  46. J.H. Magill: Crystallization of poly-(tetramethyl-p-silphenylene)-solixane polymers. J. Appl. Phys. 35, 3249 (1964).

    Article  CAS  Google Scholar 

  47. T. Pusztai, G. Bortel and L. Gránásy: Phase field theory modeling of polycrystalline freezing. Mater. Sci. Eng. A 413–414, 412 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gránásy.

Additional information

This paper was selected as the Outstanding Meeting Paper for the 2004 MRS Fall Meeting Symposium JJ Proceedings, Vol. 859E.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gránásy, L., Pusztai, T., Börzsönyi, T. et al. Phase field theory of crystal nucleation and polycrystalline growth: A review. Journal of Materials Research 21, 309–319 (2006). https://doi.org/10.1557/jmr.2006.0011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0011

Navigation