Skip to main content

Advertisement

Log in

Silk apatite composites from electrospun fibers

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Human bone is a three-dimensional composite structure consisting of inorganic apatite crystals and organic collagen fibers. An attractive strategy for fabricating mimics of these types of composite biomaterials is to selectively grow apatite on polymers with control of structure, mechanical properties, and function. In the present study, silk/apatite composites were prepared by growing apatite on functionalized nanodiameter silk fibroin fibers prepared by electrospinning. The functionalized fibers were spun from an aqueous solution of silk/polyethylene oxide (PEO) (78/22 wt/wt) containing poly(L-aspartate) (poly-Asp), which was introduced as an analogue of noncollageous proteins normally found in bone. Silk fibroin associated with the acidic poly-Asp and acted as template for mineralization. Apatite mineral growth occurred preferentially along the longitudinal direction of the fibers, a feature that was not present in the absence of the combination of components at appropriate concentrations. Energy dispersive spectroscopy and x-ray diffraction confirmed that the mineral deposits were apatite. The results suggest that this approach can be used to form structures with potential utility for bone-related biomaterials based on the ability to control the interface wherein nucleation and crystal growth occur on the silk fibroin. With this level of inorganic-organic control, coupled with the unique mechanical properties, slow rates of biodegradation, and polymorphic features of this type of proteins, new opportunities emerge for utility of biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Li and D.L. Kaplan: Biomimetic composites via molecular scale self-assembly and biomineralization. Curr. Opin. Solid State Mater. Sci. 7 265 (2003).

    Article  CAS  Google Scholar 

  2. K. Sato Y. Kumagai and J. Tanaka: Apatite formation on organic monolayers in simulated body environment. J. Biomed. Mater. Res. 50 16 (2000).

    Article  CAS  Google Scholar 

  3. M. Tanahashi and T. Matsuda: Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J. Biomed. Mater. Res. 34 305 (1997).

    Article  CAS  Google Scholar 

  4. S. Kamei N. Tomita S. Tamai K. Kato and Y. Ikada: Histologic and mechanical evaluation for bone bonding of polymer surfaces grafted with a phosphate-containing polymer. J. Biomed. Mater. Res. 37 384 (1997).

    Article  CAS  Google Scholar 

  5. K. Kato Y. Eika and Y. Ikada: Deposition of a hydroxyapatite thin layer onto a polymer surface carrying grafted phosphate polymer chains. J. Biomed. Mater. Res. 32 687 (1996).

    Article  CAS  Google Scholar 

  6. O. Tretinnikov K. Kato and Y. Ikada: In vitro hydroxyapatite deposition onto a film surface-grafted with organophosphate polymer. J. Biomed. Mater. Res. 28 1365 (1994).

    Article  CAS  Google Scholar 

  7. T. Taguchi Y. Muraoka H. Matsuyama A. Kishida and M. Akashi: Apatite coating on hydrophilic polymer-grafted poly(ethylene) films using an alternate soaking process. Biomaterials 22 53 (2001).

    Article  CAS  Google Scholar 

  8. M. Tanahashi T. Yao T. Kokubo M. Minoda T. Miyamoto T. Nakamura and T. Yamamuro: Apatite coated on organic polymers by biomimetic process: Improvement in its adhesion to substrate by glow-discharge treatment. J. Biomed. Mater. Res. 29 349 (1995).

    Article  CAS  Google Scholar 

  9. M. Tanahashi T. Yao T. Kokubo M. Minoda T. Miyamoto T. Nakamura and T. Yamamuro: Apatite coated on organic polymers by biomimetic process: Improvement in its adhesion to substrated by naoh treatment. J. Appl. Biomater. 5 339 (1994).

    Article  CAS  Google Scholar 

  10. T. Kawai C. Ohtsuki M. Kamitakahara T. Miyazaki M. Tanihara Y. Sakaguchi and S. Konagaya: Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process. Biomaterials 25 4529 (2004).

    Article  CAS  Google Scholar 

  11. A.C.A. Wan E. Khor and G.W. Hastings: Preparation of a chitin–apatite composite by in situ precipitation onto porous chitin scaffolds. J. Biomed. Mater. Res. 41 541 (1998).

    Article  CAS  Google Scholar 

  12. M. Kawashita M. Nakao M. Minoda H.M. Kim T. Beppu T. Miyamoto T. Kokubo and T. Nakamura: Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials 24 2477 (2003).

    Article  CAS  Google Scholar 

  13. A. Bigi E. Boanini S. Panzavolta N. Roveri and K. Rubini: Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid. J. Biomed. Mater. Res. 59 709 (2002).

    Article  CAS  Google Scholar 

  14. R. Zhang and P.X. Ma: Porous poly(l-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Res. 45 285 (1999).

    Article  CAS  Google Scholar 

  15. W.L. Murphy D.H. Kohn and D.J. Mooney: Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J. Biomed. Mater. Res. 50 50 (2000).

    Article  CAS  Google Scholar 

  16. A. Oyane M. Kawashita K. Nakanishi T. Kokubo M. Minoda T. Miyamoto and T. Nakamura: Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions. Biomaterials 24 1729 (2003).

    Article  CAS  Google Scholar 

  17. G.H. Altman F. Diaz C. Jakuba T. Calabro R.L. Horan J. Chen H. Lu J. Richmond and D.L. Kaplan: Silk-based biomaterials. Biomaterials 24 401 (2003).

    Article  CAS  Google Scholar 

  18. B. Panilaitis G.H. Altman J. Chen H.J. Jin V. Karageorgiou and D.L. Kaplan: Macrophage responses to silk. Biomaterials 24 3079 (2003).

    Article  CAS  Google Scholar 

  19. G.H. Altman R.L. Horan H.H. Lu J. Moreau I. Martin J.C. Richmond and D.L. Kaplan: Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23 4131 (2002).

    Article  CAS  Google Scholar 

  20. J. Chen G.H. Altman V. Karageorgiou R.L. Horan A. Collette V. Volloch T. Calabro and D.L. Kaplan: Human bone marrow stromal cell and ligment fibroblast responses on rgd-modified silk fibers. J. Biomed. Mater. Res. 67A 559 (2003).

    Article  CAS  Google Scholar 

  21. H. Yoshimoto Y.M. Shin H. Terai and J.P. Vacanti: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24 2077 (2003).

    Article  CAS  Google Scholar 

  22. J.A. Matthews G.E. Wnek D.G. Simpson and G.L. Bowlin: Electrospinning of collagen nanofibers. Biomacromolecules 3 232 (2002).

    Article  CAS  Google Scholar 

  23. H.J. Jin J. Chen V. Karageorgiou G.H. Altman and D.L. Kaplan: Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25 1039 (2004).

    Article  CAS  Google Scholar 

  24. E.R. Kenawy G.L. Bowlin K. Mansfield J. Layman D.G. Simpson E.H. Sanders and G.E. Wnek: Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate) poly(lactic acid) and a blend. J. Controlled Release 81 57 (2002).

    Article  CAS  Google Scholar 

  25. J.D. Stitzel K. Pawlowski G.E. Wnek D.G. Simpson and G.L. Bowlin: Arterial smooth muscle cell proliferation on a novel biomimicking vascular graft scaffolds. J. Biomater. Appl. 16 22 (2001).

    Article  CAS  Google Scholar 

  26. L. Huang A. Mcmillan R.P. Apkarian B. Pourdeyhimi V.P. Conticello and E.L. Chaikof: Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Macromolecules 33 2989 (2000).

    Article  CAS  Google Scholar 

  27. J.P. Anderson S.C. Nilsson R.M. Rajachar R. Logan N.A. Weissman and D.C. Martin: Bioactive genetically engineered protein polymer films on silicon devices in Biomolecular Materials by Design edited by M. Alper M. Bayley D. Kaplan and M. Navis (Mater. Res. Soc. Symp. Proc. 330 Pittsburgh PA 1994) p. 171.

    CAS  Google Scholar 

  28. C.J. Buchko L.C. Chen Y. Shen and D.C. Martin: Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40 7397 (1999).

    Article  CAS  Google Scholar 

  29. C.J. Buchko K.M. Kozloff and D.C. Martin: Surface characterization of porous biocompatible protein polymer thin films. Biomaterials 22 1289 (2001).

    Article  CAS  Google Scholar 

  30. H.J. Jin S.V. Fridrikh G.C. Rutledge and D.L. Kaplan: Electrospinning bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3 1233 (2002).

    Article  CAS  Google Scholar 

  31. L. Huang R.P. Apkarian and E.L. Chaikof: High-resolution analysis of engineered type i collagen nanofibers by electron microscopy. Scanning 23 372 (2001).

    Article  CAS  Google Scholar 

  32. L. Huang K. Nagapudi R.P. Apkarian and E.L. Chaikof: Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci. Polym. Ed. 12 979 (2001).

    Article  CAS  Google Scholar 

  33. S. Zarkoob D.H. Reneker R.K. Eby S.D. Hudson D. Ertley and W.W. Adams: Structure and morphology of nano electrospun silk fibers. Polymer Preprints (Am. Chem. Soc. Division of Polymer Chemistry). 39 244 (1998).

    CAS  Google Scholar 

  34. E. Bini D.P. Knight and D.L. Kaplan: Mapping domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol. 335 27 (2004).

    Article  CAS  Google Scholar 

  35. H.J. Jin and D.L. Kaplan: Mechanism of silk processing in insects and spiders. Nature 424 1057 (2003).

    Article  CAS  Google Scholar 

  36. T. Furuzono T. Taguchi A. Kishida M. Akashi and Y. Tamada: Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J. Biomed. Mater. Res. 50 344 (2000).

    Article  CAS  Google Scholar 

  37. X. Chen D.P. Knight Z. Shao and F. Vollrath: Regenerated bombyx silk solutions studied with rheometry and FTIR. Polymer 42 09969 (2001).

    Article  CAS  Google Scholar 

  38. O.N. Tretinnikov and Y. Tamada: Influence of casting temperature on the near-surface structure and wettability of cast silk fibroin films. Langmuir 17 7406 (2001).

    Article  CAS  Google Scholar 

  39. I.C. Um H. Kweon Y.H. Park and S. Hudson: Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int. J. Biol. Macromol. 29 91 (2001).

    Article  CAS  Google Scholar 

  40. R. Dersch T. Liu A.K. Schaper A. Greiner and J.H. Wendorff: Electrospun nanofibers: Internal structure and intrinsic orientation. J. Polym. Sci. Part A: Polym. Chem. 41 545 (2003).

    Article  CAS  Google Scholar 

  41. X. Chen Z. Shao N.S. Marinkovic L.M. Miller P. Zhou and M.R. Chance: Conformation transition kinetics of regenerated bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophys. Chem. 89 25 (2001).

    Article  CAS  Google Scholar 

  42. M. Li W. Tao S. Kuga and Y. Nishiyama: Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment. Polym. Adv. Technol. 14 694 (2003).

    Article  CAS  Google Scholar 

  43. Z. Chen M.D. Foster W. Zhou H. Fong and D.H. Reneker: Structure of poly(ferrocenyldimethylsilane) in electrospun nanofibers. Macromolecules 34 6156 (2001).

    Article  CAS  Google Scholar 

  44. R. Jaeger H. Schönherr and G.J. Vancso: Chain packing in electrospun poly(ethylene oxide) visualized by atomic force microscopy. Macromolecules 29 7634 (1996).

    Article  CAS  Google Scholar 

  45. N. Sasaki and Y. Sudoh: X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif. Tissue Int. 60 361 (1997).

    Article  CAS  Google Scholar 

  46. S. Weiner and W. Traub: Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 206 262 (1986).

    Article  CAS  Google Scholar 

  47. M. Kikuchi S. Itoh S. Ichinose K. Shinomiya and J. Tanaka: Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22 1705 (2001).

    Article  CAS  Google Scholar 

  48. S.H. Rhee Y. Suetsugu and J. Tanaka: Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomaterials 22 2843 (2001).

    Article  CAS  Google Scholar 

  49. N. Roveri G. Falini M.C. Sidoti A. Tampieri E. Landi M. Sandri and B. Parma: Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers. Mater. Sci. Eng. C 23 441 (2003).

    Article  CAS  Google Scholar 

  50. A. Takeuchi C. Ohtsuki T. Miyazaki H. Tanaka M. Yamazaki and M. Tanihara: Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J. Biomed. Mater. Res. 65A 283 (2003).

    Article  CAS  Google Scholar 

  51. H. Gao B. Ji I.L. Jager E. Arzt and P. Fratzl: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. USA 100 5597 (2003).

    Article  CAS  Google Scholar 

  52. I. Jager and P. Fratzl: Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79 1737 (2000).

    Article  CAS  Google Scholar 

  53. C. Li: Silk polymer templates in biomineralization. Ph.D. Thesis Tufts University Medford MA (2005) p. 259.

    Google Scholar 

  54. D. Li Y. Wang and Y. Xia: Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16 361 (2004).

    Article  CAS  Google Scholar 

  55. H.M. Kim Y. Kim S.J. Park C. Rey H. Lee M.J. Glimcher and J. Ko Seung: Thin film of low-crystalline calcium phosphate apatite formed at low temperature. Biomaterials 21 1129 (2000).

    Article  CAS  Google Scholar 

  56. P. Frayssinet J.L. Trouillet N. Rouquet E. Azimus and A. Autefage: Osseointegration of macroporous calcium phosphate ceramics having a different chemical composition. Biomaterials 14 423 (1993).

    Article  CAS  Google Scholar 

  57. H.J. Jin J. Park R. Valluzzi P. Cebe and D.L. Kaplan: Biomaterial films of bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules 5 711 (2004).

    Article  CAS  Google Scholar 

  58. R. Nazarov H.J. Jin and D.L. Kaplan: Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5 718 (2004).

    Article  CAS  Google Scholar 

  59. U.J. Kim J. Park H. Kim Joo M. Wada and D.L. Kaplan: Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26 2775 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Jin, HJ., Botsaris, G.D. et al. Silk apatite composites from electrospun fibers. Journal of Materials Research 20, 3374–3384 (2005). https://doi.org/10.1557/jmr.2005.0425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0425

Navigation