Skip to main content
Log in

Organic and nano-structured composite photovoltaics: An overview

  • Reviews—Energy and The Environment Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Organic photovoltaic devices are poised to fill the low-cost, low power niche in the solar cell market. Recently measured efficiencies of solid-state organic cells are nudging 5% while Grätzel’s more established dye-sensitized solar cell technology is more than double this. A fundamental understanding of the excitonic nature of organic materials is an essential backbone for device engineering. Bound electron-hole pairs,“excitons,” are formed in organic semiconductors on photo-absorption. In the organic solar cell, the exciton must diffuse to the donor-accepter interface for simultaneous charge generation and separation. This interface is critical as the concentration of charge carriers is high and recombination here is higher than in the bulk. Nanostructured engineering of the interface has been utilized to maximize organic materials properties, namely to compensate the poor exciton diffusion lengths and lower mobilities. Excitonic solar cells have different limitations on their open-circuit photo-voltages due to these high interfacial charge carrier concentrations, and their behavior cannot be interpreted as if they were conventional solar cells. This article briefly reviews some of the differences between excitonic organic solar cells and conventional inorganic solar cells and highlights some of the technical strategies used in this rapidly progressing field, whose ultimate aim is for organic solar cells to be a commercial reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Alsema: Energy pay-back time and CO2 emissions of PV systems. Prog. Photovoltaics 8 17 (2000).

    Article  CAS  Google Scholar 

  2. L.S. Hung and C.H. Chen: Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Eng. R 39 143 (2002).

    Article  Google Scholar 

  3. N.K. Patel S. Cina and J.H. Burroughes: High-efficiency organic light-emitting diodes. IEEE J. Sel. Top. Quant. 8 346 (2002).

    Article  CAS  Google Scholar 

  4. R. Neumann and D. Davidov: Layered assemblies and electroluminescence in poly(arylenevinylene)-type conjugated polymers. Acta Polym. 49 642 (1998).

    Article  CAS  Google Scholar 

  5. P.E. Burrows G. Gu V. Bulovic Z. Shen S.R. Forrest and M.E. Thompson: Achieving full-color organic light-emitting devices for lightweight flat-panel displays. IEEE Electron Dev. 44 1188 (1997).

    Article  CAS  Google Scholar 

  6. B.A. Gregg: The photoconversion mechanism of excitonic solar cells. MRS Bull. 30(2005).

  7. B.A. Gregg: Excitonic solar cells. J. Phys. Chem. B 107 4688 (2003).

    Article  CAS  Google Scholar 

  8. B.A. Gregg: Coulomb forces in excitonic solar cells in Organic Photovoltaics edited by S.S. Sun and N.S. Sariciftci (Marcell Dekker New York 2005) p. 139.

  9. B.A. Gregg: Excitonic solar cells: The physics and chemistry of organic-based photovoltaics. Molecules Comp. Electron. Dev. 844 243 (2003).

    Article  CAS  Google Scholar 

  10. B.A. Gregg and M.C. Hanna: Comparing organic to inorganic photovoltaic cells: Theory experiment and simulation. J. Appl. Phys. 93 3605 (2003).

    Article  CAS  Google Scholar 

  11. M.A. Green: Solar Cells: Operating Principles Technology and Systems Applications 1st ed. (The University of New South Wales Sydney Australia 1986).

    Google Scholar 

  12. S.M. Sze Physics of Semiconductor Devices 2nd ed. (Wiley-Interscience New York 1981).

    Google Scholar 

  13. A.L. Fahrenbruch and R.H. Bube: Fundamentals of Solar Cells: Photovoltaic Energy Conversion (Academic Press New York 1983).

    Google Scholar 

  14. M. Grätzel: Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovoltaics 8 171 (2000).

    Article  Google Scholar 

  15. B. O’Regan and M. Gratzel: A low-cost high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 737 (1991).

    Article  Google Scholar 

  16. B. O’Regan J. Moser M. Anderson and M. Gratzel: Vectorial electron injection into transparent semiconductor membranes and electric-field effects on the dynamics of light-induced charge separation. J. Phys. Chem. 94 8720 (1990).

    Article  Google Scholar 

  17. M.K. Nazeeruddin A. Kay I. Rodicio R. Humphrybaker E. Muller P. Liska N. Vlachopoulos and M. Gratzel: Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(Ii) charge-transfer sensitizers (X = Cl- Br- I- Cn- And Scn-) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115 6382 (1993).

    Article  CAS  Google Scholar 

  18. C.W. Tang: 2-layer organic photovoltaic cell. Appl. Phys. Lett. 48 183 (1986).

    Article  CAS  Google Scholar 

  19. C. Waldauff P. Schilinsky J. Hauch and C.J. Brabec: Material and device concepts for organic photovoltaics: towards competitive efficiencies. Thin Solid Films 451–452 503 (2004).

    Article  CAS  Google Scholar 

  20. P. Peumans S. Uchida and S.R. Forrest: Efficient bulk heterojunction photovolataic cells using small-molecular-weight organic thin films. Nature 425 158 (2003).

    Article  CAS  Google Scholar 

  21. M.A. Green: Solar cell efficiency tables (Version 25). Prog. Photovoltaics 13 49 (2005).

    Article  CAS  Google Scholar 

  22. A. Hinsch J. Kroon K. Rainer R. Sasrawan A. Meyer and I. Uhlendorf: In Long-term stability and efficiency of dye-sensitized solar cells (Munich Germany 2001) p. 51.

    Google Scholar 

  23. R. Komiya L.Y. Han R. Yamanaka A. Islam and T. Mitate: Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte. J. Photochem. Photobio. A 164 123 (2004).

    Article  CAS  Google Scholar 

  24. G.R.R.A. Kumara A. Konno K. Shiratsuchi J. Tsukahara and K. Tennakone: Dye-sensitized solid state solar cells: Use of crystal growth inhibitors for the deposition of the hole collector. Chem. Mater. 14 945 (2002).

    Article  CAS  Google Scholar 

  25. G.R.R.A. Kumara S. Kaneko M. Okuya and K. Tennakone: Fabrication of solid state dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor. Langmuir 18 10493 (2002).

    Article  CAS  Google Scholar 

  26. Q.B. Meng K. Takahashi X.T. Zhang I. Sutanto T.N. Rao O. Sato A. Fujishima H. Watanabe T. Nakamort and M. Urangami: Fabrication of an efficient solid state dye-sensitized solar cell. Langmuir 19 3572 (2003).

    Article  CAS  Google Scholar 

  27. B. O’Regan F. Lenzmann R. Muis and J. Wienke: A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: Analysis of pore filling and IV characteristics. Chem. Mater. 14 5023 (2002).

    Article  CAS  Google Scholar 

  28. M. Grätzel: Dye-sensitized solid-state heterjunction solar cells. MRS Bull. 30 23 (2005).

    Article  Google Scholar 

  29. Schmidt-L. Mende S.M. Zakeeruddin and GräM. tzel: Efficiency improvement in solid state dye sensitized photovoltaics with an amphilic Ruthenium dye. Appl. Phys. Lett. 86 013504 (2005).

    Article  CAS  Google Scholar 

  30. A.K. Gosh and T. Feng: Merocyanine organic solar cells. J. Appl. Phys. 49 5982 (1978).

    Article  Google Scholar 

  31. J.G. Xue B.P. Rand S. Uchida and S.R. Forrest: A hybrid planar-mixed molecular heterojunction photovoltaic cell. Adv. Mater. 17 66 (2005).

    Article  CAS  Google Scholar 

  32. S.R. Forrest: The limits to organic photovoltaic cell efficiency. MRS Bull. 30 28 (2005).

    Article  CAS  Google Scholar 

  33. J.G. Xue S. Uchida B.P. Rand and S.R. Forrest: Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl. Phys. Lett. 85 5757 (2004).

    Article  CAS  Google Scholar 

  34. B.Q. Sun H.J. Snaith A.S. Dhoot S. Westenhoff and N.C. Greenham: Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J. Appl. Phys. 97 (2005).

  35. W.U. Huynh J.J. Dittmer and A.P. Alivisatos: Hybrid nanorod-polymer solar cells. Science 295 2425 (2002).

    Article  CAS  Google Scholar 

  36. D.J. Milliron I. Gur and A.P. Alivisatos: Hybrid organic–manocrystal solar cells. MRS Bull. 30 41 (2005).

    Article  CAS  Google Scholar 

  37. S.G. Chen B.A. Gregg and P. Stradins: Doping highly ordered organic semiconductors: Experimental results and fits to a self-consistent model of excitonic processes doping and transport. J. Phys. Chem. B. 2005 (in press).

    Google Scholar 

  38. B.A. Gregg S.G. Chen and R.A. Cormier: Coulomb forces and doping in organic semiconductors. Chem. Mater. 16 4586 (2004).

    Article  CAS  Google Scholar 

  39. A. Hagfeldt and M. Gratzel: Molecular photovoltaics. Accounts Chem. Res. 33 269 (2000).

    Article  CAS  Google Scholar 

  40. J. Simon and J.J. Andre: Molecular Semiconductors (Springer Verlag Berlin 1985).

    Book  Google Scholar 

  41. B.A. Gregg: Bilayer molecular solar cells on spin-coated TiO2 substrates. Chem. Phys. Lett. 258 376 (1996).

    Article  CAS  Google Scholar 

  42. B.A. Gregg M.A. Fox and A.J. Bard: Photovoltaic effect in symmetrical cells of a liquid-crystal porphyrin. J. Phys. Chem. 94 1586 (1990).

    Article  CAS  Google Scholar 

  43. B.A. Gregg: The essential interface: Studies in dye-sensitized solar cells in Semiconductor Photochemistry and Photophysics; Vol. 10 edited by K.S. Schanze and V. Ramamurthy (Marcel Dekker New York 2002) p. 51.

  44. B.A. Gregg: Photovoltaic properties of a molecular semiconductor modulated by an exciton-dissociating film. Appl. Phys. Lett. 67 1271 (1995).

    Article  Google Scholar 

  45. M. Pope and C.E. Swenberg: Electronic Processes in Organic Crystals and Polymers 2nd ed. (Oxford University Press New York 1999).

    Google Scholar 

  46. B.A. Gregg J. Sprague and M.W. Peterson: Long-range singlet energy transfer in perylene bis(phenethylimide) films. J. Phys. Chem. B 101 5362 (1997).

    Article  CAS  Google Scholar 

  47. Z.D. Popovic A.M. Hor and R.O. Loutfy: A study of carrier generation mechanism in benzimidazole perylene tetraphenyldiamine thin-film structures. Chem. Phys. 127 451 (1988).

    Article  CAS  Google Scholar 

  48. A.A. Zakhidov and K. Yoshino: Polarization double barriers at the interfaces in organic multilayered structures and superlattices. Synth. Met. 64 155 (1994).

    Article  CAS  Google Scholar 

  49. V.M. Kenkre P.E. Parris and D. Schmid: Investigation of the appropriateness of sensitized luminescence to determine exciton motion parameters in pure molecular-crystals. Phys. Rev. B 32 4946 (1985).

    Article  CAS  Google Scholar 

  50. Y. Wang and A. Suna: Fullerenes in photoconductive polymers; Charge generation and charge transport. J. Phys. Chem. B 101 5627 (1997).

    Article  CAS  Google Scholar 

  51. B.A. Gregg F. Pichot S. Ferrere and C.L. Fields: Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J. Phys. Chem. B 105 1422 (2001).

    Article  CAS  Google Scholar 

  52. J.E. Moser and M. Gratzel: Observation of temperature independent heterogeneous electron-transfer reactions in the inverted marcus region. Chem. Phys. 176 493 (1993).

    Article  CAS  Google Scholar 

  53. S.A. Haque Y. Tachibana D.R. Klug and J.R. Durrant: Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias. J. Phys. Chem. B 102 1745 (1998).

    Article  CAS  Google Scholar 

  54. J.S. Salafsky W.H. Lubberhuizen E. van Faassen and R.E.I. Schropp: Charge dynamics following dye photoinjection into a TiO2 nanocrystalline network. J. Phys. Chem. B. 102 766 (1998).

    Article  CAS  Google Scholar 

  55. S.A. Haque Y. Tachibana R.L. Willis J.E. Moser M. Gratzel D.R. Klug and J.R. Durrant: Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. B 104 538 (2000).

    Article  CAS  Google Scholar 

  56. F. Pichot and B.A. Gregg: The photovoltage-determining mechanism in dye-sensitized solar cells. J. Phys. Chem. B 104 6 (2000).

    Article  CAS  Google Scholar 

  57. J. Nelson J. Kirkpatrick and P. Ravirajan: Factors limiting the efficiency of molecular photovoltaic devices. Phys. Rev. B 69 035337 (2004).

    Article  CAS  Google Scholar 

  58. C.M. Ramsdale J.A. Barker A.C. Arias J.D. MacKenzie R.H. Friend and N.C. Greenham: The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices. J. Appl. Phys. 92 4266 (2002).

    Article  CAS  Google Scholar 

  59. S.X. Tan J. Zhai M.X. Wan Q.B. Meng Y.L. Li L. Jiang and D.B. Zhu: Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells. J. Phys. Chem. B 108 18693 (2004).

    Article  CAS  Google Scholar 

  60. S. Ferrere and B.A. Gregg: Photosensitization of TiO2 by [Fe-II(2,2’-bipyridine-4,4’-dicarboxylic acid)(2)(CN)(2)]: Band selective electron injection from ultra-short-lived excited states. J. Am. Chem. Soc. 120 843 (1998).

    Article  CAS  Google Scholar 

  61. Y. Tachibana J.E. Moser M. Gratzel D.R. Klug and J.R. Durrant: Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. 100 20056 (1996).

    Article  CAS  Google Scholar 

  62. J.B. Asbury R.J. Ellingson H.N. Ghosh S. Ferrere A.J. Nozik and T.Q. Lian: Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)(2)(NCS)(2) in solution and on nanocrystalline TiO2 and Al2O3 thin films. J. Phys. Chem. B 103 3110 (1999).

    Article  CAS  Google Scholar 

  63. J. Nelson: Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 59 15374 (1999).

    Article  CAS  Google Scholar 

  64. N. Kopidakis E.A. Schiff N.G. Park J. van Lagemaat and A.J. de Frank: Ambipolar diffusion of photocarriers in electrolyte-filled nanoporous TiO2. J. Phys. Chem. B 104 3930 (2000).

    Article  CAS  Google Scholar 

  65. N. Papageorgiou C. Barbe and M. Gratzel: Morphology and adsorbate dependence of ionic transport in dye sensitized mesoporous TiO2 films. J. Phys. Chem. B 102 4156 (1998).

    Article  CAS  Google Scholar 

  66. D. Cahen G. Hodes M. Gratzel J.F. Guillemoles and I. Riess: Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B 104 2053 (2000).

    Article  CAS  Google Scholar 

  67. G. Hodes L. Thompson J. Dubow and K. Rajeshwar: Heterojunction silicon indium tin oxide photo-electrodes-development of stable systems in aqueous-electrolytes and their applicability to solar-energy conversion and storage. J. Am. Chem. Soc. 105 324 (1983).

    Article  CAS  Google Scholar 

  68. L. Kronik N. Ashkenasy M. Leibovitch E. Fefer Y. Shapira S. Gorer and G. Hodes: Surface states and photovoltaic effects in CdSe quantum dot films. J. Electrochem. Soc. 145 1748 (1998).

    Article  CAS  Google Scholar 

  69. A. Zaban A. Meier and B.A. Gregg: Electric potential distribution and short-range screening in nanoporous TiO2 electrodes. J. Phys. Chem. B 101 7985 (1997).

    Article  CAS  Google Scholar 

  70. F. Cao G. Oskam and P.C. Searson: A solid state dye sensitised photoelectrochemical cell. J. Phys. Chem. 99 17071 (1995).

    Article  CAS  Google Scholar 

  71. A. Solbrand H. Lindstrom H. Rensmo A. Hagfeldt S.E. Lindquist and S. Sodergren: Electron transport in the nanostructured TiO2-electrolyte system studied with time-resolved photocurrents. J. Phys. Chem. B 101 2514 (1997).

    Article  CAS  Google Scholar 

  72. G.A. Chamberlain: Organic solar-cells—A review. Solar Cells 8 47 (1983).

    Article  CAS  Google Scholar 

  73. P. Peumans A. Yakimov and S.R. Forrest: Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93 3693 (2003).

    Article  CAS  Google Scholar 

  74. P. Peumans V. Bulovic and S.R. Forrest: Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl. Phys. Lett. 76 2650 (2000).

    Article  CAS  Google Scholar 

  75. A. Yakimov and S.R. Forrest: High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl. Phys. Lett. 80 1667 (2002).

    Article  CAS  Google Scholar 

  76. M. Hiramoto M. Suezaki and M. Yokoyama: Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar-cell. Chem. Lett. 327 (1990).

  77. P. Peumans and S.R. Forrest: Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells. Appl. Phys. Lett. 79 126 (2001).

    Article  CAS  Google Scholar 

  78. R. Pacios J. Nelson D.D.C. Bradley T. Virgili G. Lanzani and C.J. Brabec: Ultrafast spectroscopic studies in polyfluorene: [6,6]-phenyl C-61-butyric acid methyl ester blend films: monitoring the photoinduced charge transfer process. J. Phys.: Condens. Matter 16 8105 (2004).

    CAS  Google Scholar 

  79. C.J. Brabec G. Zerza G. Cerullo De S. Silvestri S. Luzzati J.C. Hummelen and S. Sariciftci: Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett. 340 232 (2001).

    Article  CAS  Google Scholar 

  80. S.E. Shaheen C.J. Brabec N.S. Sariciftci F. Padinger T. Fromherz and J.C. Hummelen: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78 841 (2001).

    Article  CAS  Google Scholar 

  81. J.M. Kroon M.M. Wienk W.J.H. Verhees and J.C. Hummelen: Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells. Thin Solid Films 403 223 (2002).

    Article  Google Scholar 

  82. T. Munters T. Martens L. Goris V. Vrindts J. Manca L. Lutsen De W. Ceuninck D. Vanderzande De L. Schepper J. Gelan N.S. Sariciftci and C.J. Brabec: A comparison between state-of-the-art ‘gilch’ and ‘sulphinyl’ synthesised MDMO-PPV/PCBM bulk hetero-junction solar cells. Thin Solid Films. 403 247 (2002).

    Article  Google Scholar 

  83. T. Aernouts W. Geens J. Poortmans P. Heremans S. Borghs and R. Mertens: Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions. Thin Solid Films 403 297 (2002).

    Article  Google Scholar 

  84. R.A.J. Janssen J.C. Hummelen and N.S. Sariciftci: Polymer-fullerene bulk heterojunction solar cells. MRS Bull. 30 33 (2005).

    Article  CAS  Google Scholar 

  85. H. Hoppe M. Niggemann C. Winder J. Kraut R. Hiesgen A. Hinsch D. Meissner and N.S. Sariciftci: Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv. Funct. Mater. 14 1005 (2004).

    Article  CAS  Google Scholar 

  86. N. Camaioni M. Catellani S. Luzzati and A. Migliori: Morphological characterization of poly(3-octylthiophene):plasticizer: C-60 blends. Thin Solid Films 403 489 (2002).

    Article  Google Scholar 

  87. U. Stalmach B. de Boer C. Videlot P.F. van Hutten and G. Hadziioannou: Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques. J. Am. Chem. Soc. 122 5464 (2000).

    Article  CAS  Google Scholar 

  88. G. Hadziioannou: Semiconducting block copolymers for self-assembled photovoltaic devices. MRS Bull. 27 456 (2002).

    Article  CAS  Google Scholar 

  89. L. Schmidt-Mende A. Fechtenkotter K. Mullen E. Moons R.H. Friend and J.D. MacKenzie: Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293 1119 (2001).

    Article  CAS  Google Scholar 

  90. J.W. Baur M.F. Durstock B.E. Taylor R.J. Spry S. Reulbach and L.Y. Chiang: Photovoltaic interface modification via electrostatic self-assembly. Synth. Met. 121 1547 (2001).

    Article  CAS  Google Scholar 

  91. M.F. Durstock B. Taylor R.J. Spry L. Chiang S. Reulbach K. Heitfeld and J.W. Baur: Electrostatic self-assembly as a means to create organic photovoltaic devices. Synth. Met. 116 373 (2001).

    Article  CAS  Google Scholar 

  92. R. Schroeder J.R. Heflin H. Wang H.W. Gibson and W. Graupner: Control of excited state dynamics in ionically self-assembled monolayers of conjugated molecules. Synth. Met. 121 1521 (2001).

    Article  CAS  Google Scholar 

  93. T. Kietzke D. Neher K. Landfester R. Montenegro R. Guntner and U. Scherf: Novel approaches to polymer blends based on polymer nanoparticles. Nat. Mater. 2 408 (2003).

    Article  CAS  Google Scholar 

  94. A.C. Arango S.A. Carter and P.J. Brock: Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles. Appl. Phys. Lett. 74 1698 (1999).

    Article  CAS  Google Scholar 

  95. K.M. Coakley Y. Liu C. Goh and M.D. McGehee: Ordered organic-inorganic bulk heterojunction photovoltaic cells. MRS Bull. 30 37 (2005).

    Article  CAS  Google Scholar 

  96. K.M. Coakley and M.D. McGehee: Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl. Phys. Lett. 83 3380 (2003).

    Article  CAS  Google Scholar 

  97. P. Ravirajan S.A. Haque J.R. Durrant D. Poplavskyy D.D.C. Bradley and J. Nelson: Hybrid nanocrystalline TiO2 solar cells with a fluorene-thiophene copolymer as a sensitizer and hole conductor. J. Appl. Phys. 95 1473 (2004).

    Article  CAS  Google Scholar 

  98. R.A.J. Janssen W.J.E. Beek and M.M. Wienk: Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv. Mater. 16 1009 (2004).

    Article  CAS  Google Scholar 

  99. A.P. Alivisatos: Semiconductor clusters nanocrystals and quantum dots. Science 271 933 (1996).

    Article  CAS  Google Scholar 

  100. B.Q. Sun E. Marx and N.C. Greenham: Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett. 3 961 (2003).

    Article  CAS  Google Scholar 

  101. H. Hoppe and N.S. Sariciftci: Organic solar cells: An overview. J. Mater. Res. 19 200 (2004).

    Article  CAS  Google Scholar 

  102. J. Roncali: Synthetic principles for bandgap control in linear pi-conjugated systems. Chem. Rev. 97 173 (1997).

    Article  CAS  Google Scholar 

  103. R.D. McCullough: The chemistry of conducting polythiophenes. Adv. Mater. 10 93 (1998).

    Article  CAS  Google Scholar 

  104. J.R. Durrant S.A. Haque and E. Palomares: Towards optimization of electron transfer processes in dye sensitized solar cells. Coordin. Chem. Rev. 248 1247 (2004).

    Article  CAS  Google Scholar 

  105. C.J. Brabec S.E. Shaheen C. Winder N.S. Sariciftci and P. Denk: Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80 1288 (2002).

    Article  CAS  Google Scholar 

  106. Y.J. Ahn G.W. Kang and C.H. Lee: Photovoltaic properties of multilayer heterojunction organic solar cells. Mol. Cryst. Liq. Cryst. 377 301 (2002).

    Article  CAS  Google Scholar 

  107. Y.J. Ahn G.W. Kang C.H. Lee I.S. Yeom and S.H. Jin: Photovoltaic properties of polymer-based solar cells. Synth. Met. 137 1447 (2003).

    Article  CAS  Google Scholar 

  108. H. Frohne S.E. Shaheen C.J. Brabec D.C. Muller N.S. Sariciftci and K. Meerholz: Influence of the anodic work function on the performance of organic solar cells. Chem. Phys. Chem. 3 795 (2002).

    Article  CAS  Google Scholar 

  109. J.R. Sheats: Manufacturing and commercialization issues in organic electronics. J. Mater. Res. 19 1974 (2004).

    Article  CAS  Google Scholar 

  110. M. Shtein P. Peumans J.B. Benziger and S.R. Forrest: Direct mask- and solvent-free printing of molecular organic semiconductors. Adv. Mater. 16 1615 (2004).

    Article  CAS  Google Scholar 

  111. M. Shtein P. Peumans J.B. Benziger and S.R. Forrest: Direct mask-free patterning of molecular organic semiconductors using organic vapor jet printing. J. Appl. Phys. 96 4500 (2004).

    Article  CAS  Google Scholar 

  112. M. Shtein P. Peumans J.B. Benziger and S.R. Forrest: Micropatterning of small molecular weight organic semiconductor thin films using organic vapor phase deposition. J. Appl. Phys. 93 4005 (2003).

    Article  CAS  Google Scholar 

  113. X.N. Yang J.K.J. van Duren R.A.J. Janssen M.A.J. Michels and J. Loos: Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 37 2151 (2004).

    Article  CAS  Google Scholar 

  114. C.D. Muller A. Falcou N. Reckefuss M. Rojahn V. Wiederhirn P. Rudati H. Frohne O. Nuyken H. Becker and K. Meerholz: Multi-colour organic light-emitting displays by solution processing. Nature 421 829 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie E. Gledhill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gledhill, S.E., Scott, B. & Gregg, B.A. Organic and nano-structured composite photovoltaics: An overview. Journal of Materials Research 20, 3167–3179 (2005). https://doi.org/10.1557/jmr.2005.0407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0407

Navigation