Skip to main content
Log in

Enhancement of Electrical Properties of the Thermoelectric Compound Ca3Co4O9 through Use of Large-grained Powder

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hot-forged Ca3Co4O9 (Co349) ceramics were synthesized using large-grained powders prepared by a flux-growth method, and their thermoelectric properties and degree of grain alignment were evaluated. Neutron-diffraction experiments evidenced the effect of grain size on the development of the c-axis grain alignment. The optimum grain size was around 7 μm in our hot-forging method. The electrical resistivity (ρ) in the direction parallel to the pressed-plane was more reduced at higher degrees of orientation. Since ρ was reduced without lowering the Seebeck coefficient (S), the power factor (PF = S2/ρ) of the Co349 sample was improved and reached 0.8 mW/mK2 at 1073 K using Co349 grains with average size of around 7 μm. The thermal conductivity (κ) in the direction parallel to the pressed-plane slightly increased with the increase of the grain size, however the improvement of PF owing to use of large-grained powder outweighed this negative impact on the κ component of the thermoelectric figure of merit (Z = S2/ρκ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Terasaki, Y. Sasago and K. Uchinokura: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, 12685 (1997).

    Article  Google Scholar 

  2. K. Fujita, T. Mochida and K. Nakamura: High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn. J. Appl. Phys. 40, 4644 (2001).

    Article  CAS  Google Scholar 

  3. S. Li, R. Funahashi, I. Matsubara, K. Ueno and H. Yamada: High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem. 9, 1659 (1999).

    Article  CAS  Google Scholar 

  4. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani and S. Sodeoka: An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000).

    Article  CAS  Google Scholar 

  5. M. Shikano and R. Funahashi: Electrical and thermal properties of single-crystalline [Ca2CoO3]0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003).

    Article  CAS  Google Scholar 

  6. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer and B. Raveau: Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62, 166 (2000).

    Article  CAS  Google Scholar 

  7. S. Lambert, H. Leligny and D. Grebille: Three forms of the misfit layered cobaltite [Ca2CoO3][CoO2]1.62—A 4D structural investigation. J. Solid Chem. 160, 322 (2001).

    Article  CAS  Google Scholar 

  8. Y. Miyazaki, M. Onoda, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii and T. Kajitani: Modulated structure of the thermoelectric compound [Ca2CoO3]0.62CoO2. J. Phys. Soc. Jpn. 71, 491 (2002).

    Article  CAS  Google Scholar 

  9. Y. Masuda, D. Nagahama, H. Itahara, T. Tani, W.S. Seo and K. Koumoto: Thermoelectric performance of Bi- and Na-substituted Ca3Co4O9 improved through ceramic texturing. J. Mater. Chem. 13, 1094 (2003).

    Article  CAS  Google Scholar 

  10. T. Tani, H. Itahara, C. Xia and J. Sugiyama: Topotactic synthesis of highly-textured thermoelectric cobaltites. J. Mater. Chem. 13, 1865 (2003).

    Article  CAS  Google Scholar 

  11. H. Itahara, C. Xia, J. Sugiyama and T. Tani: Fabrication of textured thermoelectric layered cobaltites with various rock salt-type layers by using β-Co(OH)2 platelets as reactive templates. J. Mater. Chem. 14, 61 (2004).

    Article  CAS  Google Scholar 

  12. M. Sano, S. Horii, I. Matsubara, R. Funahashi, M. Shikano, J. Shimoyama and K. Kishio: Synthesis and thermoelectric properties of magnetically c-axis-oriented [Ca2CoO3-δ]0.62CoO2 bulk with various oxygen contents. Jpn. J. Appl. Phys. 42, L198 (2003).

    Article  CAS  Google Scholar 

  13. Y. Zhou, I. Matsubara, S. Horii, T. Takeuchi, R. Funahashi, M. Shikano, J. Shimoyama, K. Kishio, W. Shin, N. Izu and N. Murayama: Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramics. J. Appl. Phys. 93, 2653 (2003).

    Article  CAS  Google Scholar 

  14. S. Horii, I. Matsubara, M. Sano, K. Fujie, M. Suzuki, R. Funahashi, M. Shikano, W. Shin, N. Murayama, J. Shimoyama and K. Kishio: Thermoelectric performance of magnetically c-axis aligned Ca-based cobaltites. Jpn. J. Appl. Phys. 42, 7018 (2003).

    Article  CAS  Google Scholar 

  15. R. Funahashi, S. Urata, T. Sano and M. Kitawaki: Enhancement of thermoelectric figure of merit by incorporation of large single crystals in Ca3Co4O9 bulk materials. J. Mater. Res. 18, 1646 (2003).

    Article  CAS  Google Scholar 

  16. Y. Zhou, I. Matsubara, W. Shin, N. Izu and N. Murayama: Effect of grain size on electric resistivity and thermopower of (Ca2.6Bi0.4)Co4O9 thin films. J. Appl. Phys. 95, 625 (2004).

    Article  CAS  Google Scholar 

  17. M. Mikami, S. Ohtsuka, M. Yoshimura, Y. Mori, T. Sasaki, R. Funahashi and M. Shikano: Effects of KCl addition on the K2CO3 flux growth of Ca3Co4O9 crystals for a thermoelectric device. Jpn. J. Appl. Phys. 42, 3549 (2003).

    Article  CAS  Google Scholar 

  18. L. Lutterotti, S. Matthies and H.R. Wenk: MAUD (Material Analysis Using Diffraction): A user friendly Java program for Rietveld texture analysis and more, in Proceedings of the 12th ICOTOM, Vol. 1, edited by J.A. Szpunar (NRC Research Press, Ottowa, Canada, 1999), p. 1599.

    Google Scholar 

  19. H.M. Rietveld: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 62 (1969).

    Article  Google Scholar 

  20. S. Matthies and G.W. Vinel: On the reproduction of the orientation distribution function of texturized samples from reduced pole figures using the conception of a conditional ghost correction. Phys. Status Solidi B 112, 111 (1982).

    Article  Google Scholar 

  21. E. Guilmeau, R. Funahashi, M. Mikami, K. Chong and D. Chateigner: Thermoelectric properties-texture relationship in highly oriented Ca3Co4O9 composites. Appl. Phys. Lett. 85, 1490 (2004).

    Article  CAS  Google Scholar 

  22. D. Grebille, S. Lambert, F. Bourée and V. Petricek: Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides. J. Appl. Crystallogr. 37, 823 (2004).

    Article  CAS  Google Scholar 

  23. E. Guilmeau, D. Chateigner, J. Noudem, R. Funahashi, S. Horii and B. Ouladdiaf: Rietveld texture analysis of complex oxides: Examples of polyphased Bi2223 superconducting and Co349 thermoelectric textured ceramics characterization using neutron and x-ray diffraction. J. Appl. Crystallogr. 38, 199 (2005).

    Article  CAS  Google Scholar 

  24. A. Satake, H. Tanaka, T. Ohkawa, T. Fujii and I. Terasaki: Thermal conductivity of the thermoelectric layered cobalt oxides measured by the Harman method. J. Appl. Phys. 96, 931 (2004).

    Article  CAS  Google Scholar 

  25. S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka and H. Yamada: Synthesis and thermoelectric properties of the new oxide materials Ca3-xBixCo4O9+δ (0.0 < x < 0.75). Chem. Mater. 12, 2424 (2000).

    Article  CAS  Google Scholar 

  26. J. Shimoyama, S. Horii, K. Otzschi, M. Sano and K. Kishio: Oxygen nonstoichiometry in layered cobaltite Ca3Co4Oy. Jpn. J. Appl. Phys. 42L194 (2003).

    Article  CAS  Google Scholar 

  27. I. Terasaki, H. Tanaka, A. Satake, S. Okada and T. Fujii: Out-of-plane thermal conductivity of the layered thermoelectric oxide Bi2-xPbxSr2Co2Oy. Phys. Rev. B 70, 214106 (2004).

    Article  Google Scholar 

  28. D.G. Cahill, S.K. Watson and R.O. Pohl: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Mikami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikami, M., Guilmeau, E., Funahashi, R. et al. Enhancement of Electrical Properties of the Thermoelectric Compound Ca3Co4O9 through Use of Large-grained Powder. Journal of Materials Research 20, 2491–2497 (2005). https://doi.org/10.1557/jmr.2005.0298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0298

Navigation