Skip to main content
Log in

Structure and Microwave Dielectric Properties of Ca1−xYxTi1−xAlxO3 (CYTA) Ceramics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structure and dielectric properties of Ca1−xYxTi1−xAlxO3 (CYTA) ceramics prepared by the mixed-oxide route have been investigated. CYTA forms a complete solid solution with an orthorhombic perovskite structure. Residual Y4Al2O9 and Y3Al5O12 resulting from incomplete reaction are observed for ⩾ 0.9. Scanning electron microscopy shows that CYTA ceramics exhibit uniform microstructures, with an average grain size that decreases from ∼200 μm at x = 0 to ∼10 μm at x = 1.0. Transmission electron microscopy of CYTA (x = 0.3) ceramics reveals the presence of ferroelastic domains, and electron-diffraction patterns are indexed on the Pnma space group, consistent with an a+bb octahedral tilted structure. The relative permittivity, ϵr, decreases continuously from 170 to 12, while the microwave quality factor, Q·fr, increases from 10,000 to 12,000 GHz, for x = 0 and 1, respectively. CYTA (x = 0.30) ceramics exhibit ϵr ∼ 38, Q·fr of ∼14,212 GHz, and a temperature coefficient of resonance frequency, τf, of −14 ppm/°C. Small additions of acceptor (0.3 wt% ZnO) or donor (1 wt% Nb2O5) dopants decrease Q·fr by ∼20-30%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.M. Reaney and R. Ubic: Talking microwaves: A review of ceramics at the heart of the telecommunications network. Int. Ceram. 1, 48 (2000).

    Google Scholar 

  2. R.J. Cava: Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54 (2001).

    Article  CAS  Google Scholar 

  3. R.C. Kell, A.C. Greenham and G.C.E. Olds: High-permittivity temperature-stable ceramic dielectrics with low microwave loss. J. Am. Ceram. Soc. 56, 352 (1973).

    Article  CAS  Google Scholar 

  4. J. Petzelt and S. Kamba: Submillimetre and infrared response of microwave materials: Extrapolation to microwave properties. Mater. Chem. Phys. 79, 175 (2003).

    Article  CAS  Google Scholar 

  5. M.P. Seabra, M. Avdeev, V.M. Ferreira, R.C. Pullar and N.M. Alford: Structure and microwave dielectric properties of La(Mg0.5Ti0.5)O3-CaTiO3 system. J. Eur. Ceram. Soc. 23, 2403 (2003).

    Article  CAS  Google Scholar 

  6. N. Ichinose, T. Mizutani, H. Hiraki and H. Ookuma: Microwave dielectric materials in the system (Sr1−xCax)Li1/4Nb3/4)1−yTiyO3. Ceramurgia Inter. 3, 100 (1977).

    Article  CAS  Google Scholar 

  7. S. Hirahara, N. Fujikawa, S. Enami and T. Nishi: Dielectric ceramic composition and dielectric resonator. U.S. Patent No. 5,356,844 (1994).

    Google Scholar 

  8. B. Jancar, D. Suvorov, M. Valant and G. Drazic: Characterization of CaTiO3-NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23, 1391 (2003).

    Article  CAS  Google Scholar 

  9. B. Jancar, M. Valant and D. Suvorov: Solid-state reactions occurring during the synthesis of CaTiO3-NdAlO3 perovskite solid solutions. Chem. Mater. 16, 1075 (2004).

    Article  CAS  Google Scholar 

  10. E.R. Kipkoech, F. Azough, R. Freer, C. Leach, S.P. Thompson and C.C. Tang: Structural study of Ca0.7Nd0.3Ti0.7Al0.3O3 dielectric ceramics using synchrotron x-ray diffraction. J. Eur. Ceram. Soc. 23, 2677 (2003).

    Article  CAS  Google Scholar 

  11. H. Zheng, G. de Gyorgyfalva, R. Quimby, H. Bagshaw, R. Ubic, I.M. Reaney and J. Yarwood: Raman spectroscopy of B-site order-disorder in CaTiO3-based microwave ceramics. J. Eur. Ceram. Soc. 23, 2653 (2003).

    Article  CAS  Google Scholar 

  12. E.A. Nenasheva, L.P. Mudroliubova and N.F. Kartenko: Microwave dielectric properties of ceramics based on CaTiO3-LnMO3 system (Ln = La, Nd; M = Al, Ga). J. Eur. Ceram. Soc. 23, 2443 (2003).

    Article  CAS  Google Scholar 

  13. I. Levin, T.A. Vanderah, R. Coutts and S.M. Bell: Phase equilibria and dielectric properties in perovskite-like (1−x)LaCa0.5Zr0.5O3-xATiO3 (A = Ca, Sr) ceramics. J. Mater. Res. 17, 1729 (2002).

    Article  CAS  Google Scholar 

  14. I. Levin, J.Y. Chan, J.E. Maslar, T.A. Vanderah and S.M. Bell: Phase transitions and microwave dielectric properties in the perovskite-like Ca(Al0.5Nb0.5)O3-CaTiO3 system. J. Appl. Phys. 90, 904 (2001).

    Article  CAS  Google Scholar 

  15. B.W. Hakki and P.D. Coleman: A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microwave Theory Tech. 8, 402 (1960).

    Article  Google Scholar 

  16. W.E. Courtney: Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans. Microwave Theory Tech. 18, 476 (1970).

    Article  Google Scholar 

  17. A.M. Glazer: Simple ways of determining perovskite structures. Acta Crystallogr. Sect. A 31, 756 (1975).

    Article  Google Scholar 

  18. I. Levin, L.A. Bendersky, J.P. Cline, R.S. Roth and T.A. Vanderah: Octahedral tilting and cation ordering in perovskite-like Ca4Nb2O9 Ca(Ca1/3Nb2/3)O3 polymorphs. J. Solid State Chem. 150, 43 (2000).

    Article  CAS  Google Scholar 

  19. S.Y. Cho, I.T. Kim and K.S. Hong: Microwave dielectric properties and applications of rare-earth aluminates. J. Mater. Res. 14, 114 (1999).

    Article  CAS  Google Scholar 

  20. D.I. Woodward and I.M. Reaney: Electron diffraction of tilted perovskites. Acta Crystallogr. Sect. B 61, 387 (2005).

    Article  Google Scholar 

  21. X. Aupi, J. Breeze, N. Ljepojevic, L.J. Dunne, N. Malde, A.K. Axelsson and N.M. Alford: Microwave dielectric loss in oxides: Theory and experiment. J. Appl. Phys. 95, 2639 (2004).

    Article  CAS  Google Scholar 

  22. Y.B. Wang and R.C. Liebermann: Electron microscopy study of domain structure due to phase transitions in natural perovskite. Phys. Chem. Miner. 20, 147 (1993).

    Article  CAS  Google Scholar 

  23. N. Orlovskaya, N. Browning and A. Nichols: Ferroelasticity in mixed conducting LaCoO3-based perovskites: A ferroelastic phase transition. Acta Mater. 51, 5063 (2003).

    Article  CAS  Google Scholar 

  24. C.H. Kim, J.W. Jang, S.Y. Cho, I.T. Kim and K.S. Hong: Ferroelastic twins in LaAlO3 polycrystals. Phys. B 262, 438 (1999).

    Article  CAS  Google Scholar 

  25. I.M. Reaney, E.L. Colla and N. Setter: Dielectric and structural characteristics of Ba-based and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys: Part 1-Regul. Pap. Short Notes Rev. Pap. 33, 3984 (1994).

    Article  CAS  Google Scholar 

  26. B.J. Kennedy, C.J. Howard and B.C. Chakoumakos: Phase transitions in perovskite at elevated temperatures - a powder neutron diffraction study. J. Phys: Condens. Matter 11, 1479 (1999).

    CAS  Google Scholar 

  27. I.M. Reaney, P. Wise, R. Ubic, J. Breeze, N.M. Alford, D. Iddles, D. Cannell and T. Price: On the temperature coefficient of resonant frequency in microwave dielectrics. Philos. Mag. A-Phys. Condens. Matter Struct. Defect Mech. Prop. 81, 501 (2001).

    CAS  Google Scholar 

  28. A. Pashkin, S. Kamba, M. Berta, J. Petzelt, G.D.C. Csete de Györgyfalva, H. Zheng, H. Bagshaw and I.M. Reaney: High-frequency dielectric properties of CaTiO3-based microwave ceramics. J. Phys. D 38, 741 (2005).

    Article  CAS  Google Scholar 

  29. W. Wersing: Microwave ceramics for resonators and filters. Curr. Opin. Solid State Mater. Sci. 1, 715 (1996).

    Article  CAS  Google Scholar 

  30. V.M. Ferreira and J.L. Baptista: Role of niobium in magnesium titanate microwave dielectric ceramics. J. Am. Ceram. Soc. 79, 1697 (1996).

    Article  CAS  Google Scholar 

  31. G. Arlt, U. Bottger and S. Witte: Dielectric dispersion of ferroelectrics ceramics and single crystals by sound generation in piezoelectric domains. J. Am. Ceram. Soc. 78, 1097 (1995).

    Article  CAS  Google Scholar 

  32. J. Krupka, K. Derzakowski, M. Tobar, J. Hartnett and R.G. Geyer: Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol. 10, 387 (1999).

    Article  CAS  Google Scholar 

  33. A. Feteira, R. Elsebrock, A. Dias, R.L. Moreira, D.C. Sinclair and M.T. Lanagan: Synthesis and characterisation of La0.4Ba0.6Ti0.6Re0.4O3 (where Re = Y, Yb) ceramics. J. Eur. Ceram. Soc. (in print).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Feteira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feteira, A., Sinclair, D.C. & Lanagan, M.T. Structure and Microwave Dielectric Properties of Ca1−xYxTi1−xAlxO3 (CYTA) Ceramics. Journal of Materials Research 20, 2391–2399 (2005). https://doi.org/10.1557/jmr.2005.0289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0289

Navigation