Skip to main content
Log in

Three-dimensional finite element analysis of the effects of anisotropy on bone mechanical properties measured by nanoindentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A three-dimensional finite element analysis (FEA) model with elastic–plastic anisotropy was built to investigate the effects of anisotropy on nanoindentation measurements for cortical bone. The FEA model has demonstrated a capability to capture the cortical bone material response under the indentation process. By comparison with the contact area obtained from monitoring the contact profile in FEA simulations, the Oliver–Pharr method was found to underpredict or overpredict the contact area due to the effects of anisotropy. The amount of error (less than 10% for cortical bone) depended on the indentation orientation. The indentation modulus results obtained from FEA simulations at different surface orientations showed a trend similar to experimental results and were also similar to moduli calculated from a mathematical model. The Oliver–Pharr method has been shown to be useful for providing first-order approximations in the analysis of anisotropic mechanical properties of cortical bone, although the indentation modulus is influenced by anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. S. Hengsberger, A. Kulik, and P. Zysset, Bone 30, 178 (2002).

    Article  CAS  Google Scholar 

  3. C.E. Hoffler, K.E. Moore, K. Kozloff, P.K. Zysset, M.B. Brown, and S.A. Goldstein, Bone 28, 603 (2000).

    Article  Google Scholar 

  4. J.Y. Rho, M.E. Roy, T.Y. Tsui, and G.M. Pharr, J. Biomed. Mater. Res. 45, 48 (1999).

    Article  CAS  Google Scholar 

  5. J.Y. Rho, T.Y. Tsui, and G.M. Pharr, Biomaterials 18, 1325 (1997).

    Article  CAS  Google Scholar 

  6. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, and S.A. Goldstein, Tech. Health Care 6, 429 (1998).

    Article  CAS  Google Scholar 

  7. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, and S.A. Goldstein, J. Biomech. 32, 1005 (1999).

    Article  CAS  Google Scholar 

  8. Z.F. Fan, J.G. Swadener, J.Y. Rho, and G.M. Pharr, J. Orthop. Res. 20, 806 (2002).

    Article  CAS  Google Scholar 

  9. J.G. Swadener, J.Y. Rho, and G.M. Pharr, J. Biomed. Mater. Res. 57, 108 (2001).

    Article  CAS  Google Scholar 

  10. J.R. Willis, J. Mech. Phys. Solids. 14, 163 (1966).

    Article  Google Scholar 

  11. J.C. Hay, E.Y. Sun, G.M. Pharr, P.F. Becher, and K.B. Alexander, J. Am. Ceram. Soc. 81, 2661 (1998).

    Article  CAS  Google Scholar 

  12. J.J. Vlassak and W.D. Nix, Philos. Mag. A 67, 1045 (1993).

    Article  Google Scholar 

  13. J.J. Vlassak and W.D. Nix, J. Mech. Phys. Solids. 42, 1223 (1994).

    Article  Google Scholar 

  14. J. Alcala, A.C. Barone, and M. Anglada, Acta. Mater. 48, 3451 (2000).

    Article  CAS  Google Scholar 

  15. M. Mata, M. Anglada, and J. Alcala, J. Mater. Res. 17, 964 (2002).

    Article  CAS  Google Scholar 

  16. A. Bolshakov and G.M. Pharr, J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  17. A.E. Giannakopoulos, P.L. Larsson, and R. Vestergaard, Int. J. Solids. Struct. 31, 2679 (1994).

    Article  Google Scholar 

  18. J.C. Hay, A. Bolshakov, and G.M. Pharr, J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  19. J.A. Knapp, D.M. Follstaedt, S.M. Myers, J.C. Barbour, and T.A. Friedmann, J. Appl. Phys. 85, 1460 (1999).

    Article  CAS  Google Scholar 

  20. R.B. Ashman, in Bone Mechanics, edited by S.C. Cowin (CRC Press. New York, 1989), pp. 75.

  21. J.Y. Rho, Ultrasonics 34, 777 (1996).

    Article  CAS  Google Scholar 

  22. B.K. Hoffmeister, S.R. Smith, S.M. Handley, and J.Y. Rho, Med. Biol. Eng. Comput. 38, 333 (2000).

    Article  CAS  Google Scholar 

  23. J.G. Swadener and G.M. Pharr, Philos. Mag. A 81, 447 (2001).

    Article  CAS  Google Scholar 

  24. Z.F. Fan and J.Y. Rho, J. Biomed. Mater. Res. 217, 357 (2003).

    Google Scholar 

  25. ABAQUS version 6.1., Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.

  26. S.C. Cowin, in Bone Mechanics, edited by S.C. Cowin (CRC Press, New York, 1989), p. 129.

  27. U. Akiva, E. Itzhak, and H.D. Wagner, Compos. Sci. Tech. 57, 173 (1997).

    Article  CAS  Google Scholar 

  28. J.L. Katz, Nature 283, 106 (1980).

    Article  CAS  Google Scholar 

  29. S. Weiner, W. Traub, and H.D. Wagner, J. Struct. Biol. 126, 241 (1999).

    Article  CAS  Google Scholar 

  30. V. Ziv, H.D. Wagner, and S. Weiner, Bone 18, 417 (1996).

    Article  CAS  Google Scholar 

  31. R.B. King, Int. J. Solids Struct. 23, 1657 (1987).

    Article  Google Scholar 

  32. P.L. Larson, S.A. Giannakopoulos, and K.W. Choi, Int. J. Solids Struct. 33, 221 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Z., Rho, J.Y. & Swadener, J.G. Three-dimensional finite element analysis of the effects of anisotropy on bone mechanical properties measured by nanoindentation. Journal of Materials Research 19, 11 (2004). https://doi.org/10.1557/jmr.2004.19.1.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.114

Navigation