Skip to main content
Log in

Clay Nanolayer Reinforcement of a Glassy Epoxy Polymer

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Glassy epoxy-clay nanocomposites (Tg ≈ 82 °C) have been prepared by the reaction of diglycidyl ether of bisphenol A and a polyoxyalkylene amine curing agent in the presence of organo cation exchanged smectite (montmorillonite) clays. Commercially available AMS and CWC montmorillonites purified on the industrial scale (Nanocor, Inc.) afforded nanocomposites with performance properties comparable to those obtained from montmorillonite purified by laboratory methods. We provide the first evidence for clay nanolayer reinforcement of a glassy epoxy matrix under compressive strain. Compression stress - strain experiments revealed substantial improvements in the modulus and yield strength when the clay nanolayers were exfoliated in the glassy matrix. However, no improvement in the modulus or yield strength was observed when the clay component was merely intercalated by the epoxy matrix, signifying that nanolayer exfoliation is an essential feature of reinforcement. Furthermore, the mechanical properties of epoxy-clay nanocomposites prepared with the C18H37NH3+ - exchanged forms of the AMS and CWC clays have been tested by dynamic mechanical analysis and thermal mechanical analysis. The nanocomposites exhibit improved dynamic storage modulus above and below the glass transition temperature, as well as lower coefficients of thermal expansivity compared to the pure polymer. In addition, the solvent resistant properties of the nanocomposites are substantially improved compared to the pristine polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giannelis, E. P. JOM 1992, 44, 28

    Article  CAS  Google Scholar 

  2. Novak, B. M. Adv. Mater. 1993, 5, 422

    Article  CAS  Google Scholar 

  3. Pinnavaia, T. J. Science 1983, 220, 365

    Article  CAS  Google Scholar 

  4. Lan, T.; Pinnavaia, T. J. Chem. Mater. 1994, 6, 2216

    Article  CAS  Google Scholar 

  5. Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. Chem. Mater. 1994, 6, 573

    Article  CAS  Google Scholar 

  6. Wang, M. S.; Pinnavaia, T. J. Chem. Mater. 1994, 6, 468

    Article  CAS  Google Scholar 

  7. Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. Chem. Mater. 1995, 7, 2144

    Article  CAS  Google Scholar 

  8. Usuki, A; Kawasumi, M; Kojima, Y; Okada, A; Kurauchi, T; Kamingato, O. J. Mater. Res. 1993, 8, 1174

    Article  CAS  Google Scholar 

  9. Usuki, A; Kojima, Y; Kawasumi, M; Okada, A; Fukushima, Y; Kurauchi, T; Kamingato, O. J. Mater. Res. 1993, 8, 1179

    Article  CAS  Google Scholar 

  10. Kojima, Y; Usuki, A; Kawasumi, M; Fukushima, Y; Okada, A; Kurauchi, T; Kamingato, O. J. Mater. Res. 1993, 8, 1185

    Article  CAS  Google Scholar 

  11. Kawasumi, M; Hasegawa, N; Kato, M; Usuki, A; Okada, A. Macromolecules 1997, 30, 6333

    Article  CAS  Google Scholar 

  12. Pinnavaia, T. J.; Lan, T.; Wang, Z.; Shi, H.; Kaviratna, P. D. ACS Symp. Ser. 1996, 662, 250

    Article  Google Scholar 

  13. Messersmith, P. B.; Giannelis, E. P. Chem. Mater. 1994, 6, 1719

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massam, J., Thomas Pinnavaia, J. Clay Nanolayer Reinforcement of a Glassy Epoxy Polymer. MRS Online Proceedings Library 520, 223–232 (1998). https://doi.org/10.1557/PROC-520-223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-520-223

Navigation