Skip to main content
Log in

Biomimetic materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

I’ve long been suspicious about attempts to see energy as the overwhelmingly central item setting both options and criteria for design in nature. Indeed, when I tried to create a conceptual framework for teaching biology to college students, I ended up putting energy distinctly second to information. Where energy rules, one can find some analog of voltage potential. But in nature, who eats whom boils down to the design and operation of one’s particular teeth and other equipment. I once set up an electrical analog of an ecosystem, but it gave an unreasonable picture until I added ad hoc diodes to keep the trees from eating the caterpillars at night and other such misbehavior. (Steve Vogel, Duke University, 2007)

In materials processing, Nature replaces the massive use of energy (for example high temperatures or harsh chemical reactions) with the use of information (which equates with structure at all levels, molecule to ecosystem). Indeed, most of the exceptional functionality of biological materials is due to their complex structure, driven by their chemical composition and morphology derived from DNA. It is here that the most important aspect of biomimetics emerges, and it has the power to redesign engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. E. Arzt, S. Gorb, R. Spolenak: From micro to nano contacts in biological attachment devices. Proc. Nat. Acad. Sci. U.S.A. 100, 10603 2003

    Article  CAS  Google Scholar 

  2. W. Barthlott, C. Neinhuis: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1 1997

    Article  CAS  Google Scholar 

  3. S.A. Velcro: Improvements in or relating to a method and a device for producing a velvet type fabric. Swiss Patent No. 721338 (1955)

    Google Scholar 

  4. L.H. Shu, I. Chiu: Natural language analysis for biomimetic design, presented at ASME Design Engineering Technical Conference, DETC2004 (2004)

  5. D.W. Urry: Elastic biomolecular machines. Sci. Am. 272, 44 1995

    Article  Google Scholar 

  6. G. Altshuller: The Innovation Algorithm, TRIZ, Systematic Innovation and Technical Creativity Technical Innovation Center Inc Worcester, MA 1999

    Google Scholar 

  7. J.F.V. Vincent, O. Bogatyreva, A-K. Pahl, N. Bogatyrev, A. Bowyer: Putting biology into TRIZ: A database of biological effects. Creativ. Innovat. Manage. 14, 66 2005

    Article  Google Scholar 

  8. J.F.V. Vincent: Deconstructing the design of a biological material. J. Theor. Biol. 236, 73 2005

    Article  Google Scholar 

  9. J.F.V. Vincent, O.A. Bogatyreva, N.R. Bogatyrev, A. Bowyer, A-K. Pahl: Biomimetics—Its practice and theory. J. R. Soc. Interface 3, 471 2006

    Article  Google Scholar 

  10. J.E. Hillerton, J.F.V. Vincent: The specific location of zinc in insect mandibles. J. Exp. Biol. 101, 333 1982

    CAS  Google Scholar 

  11. H.C. Lichtenegger, T. Schöberl, J.T. Ruokolainen, J.O. Cross, S.M. Heald, H. Birkedal, J.H. Waite, G.D. Stucky: Zinc and mechanical prowess in the jaws of Nereis, a marine worm. Proc. Nat. Acad. Sci. U.S.A. 100, 9144 2003

    Article  CAS  Google Scholar 

  12. E.I. Jones, R.A. McCance, L.R.B. Shackleton: The role of iron and silica in the structure of radular teeth of certain marine molluscs. J. Exp. Biol. 12, 65 1935

    Google Scholar 

  13. P.J. Motta: A quantitative analysis of ferric iron in butterfly fish teeth (Chaetodontidae, Perciformes) and the relationship to feeding ecology. Can. J. Zool. 65, 106 1987

    Article  Google Scholar 

  14. J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage: The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295 1999

    CAS  Google Scholar 

  15. U.G.K. Wegst: The mechanical performance of natural materials. Ph.D. Thesis, Cambridge University, Cambridge, UK (1996)

    Google Scholar 

  16. K.O. Stetter: Extremophiles and their adaptation to hot environments. FEBS Lett. 452, 22 1999

    Article  CAS  Google Scholar 

  17. F-X. Sicot, M. Mesnage, M. Masselot, J-Y. Exposito, R. Garrone, J. Deutsch, F. Gaill: Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen. J. Mol. Biol. 302, 811 2000

    Article  CAS  Google Scholar 

  18. E.C. Bell, J.M. Gosline: Mechanical design of mussel byssus: Material yield enhances attachment strength. J. Exp. Biol. 199, 1005 1996

    CAS  Google Scholar 

  19. A.P. Jackson, J.F.V. Vincent, R.M. Turner: The mechanical design of nacre. Proc. R. Soc. London, B Ser. 234, 415 1988

    Article  Google Scholar 

  20. G. Mayer: New classes of tough composite materials—Lessons from natural rigid biological systems. Mater. Sci. Eng., C 26, 1261 2006

    Article  CAS  Google Scholar 

  21. J.D. Currey: The design of mineralised hard tissues for their mechanical functions. J. Exp. Biol. 202, 3285 1999

    CAS  Google Scholar 

  22. O. Bogatyreva, A. Shillerov, N. Bogatyrev: Patterns in TRIZ contradiction matrix: Integrated and distributed systems in 4th ETRIA Symposium, edited by G. Cascini Firenze University Press Florence, Italy 2004 305

  23. J.F.V. Vincent, O. Bogatyreva, N. Bogatyrev, A.-K. Pahl, A. Bowyer: A theoretical basis for biomimetics in Mechanical Behavior of Biological and Biomimetic Systems, edited by A.J. Bushby, V.L. Ferguson, C-C. Ko, and M.L. Oyen (Mater. Res. Soc. Symp. Proc. 898E, Warrendale, PA, 2005), L14

    Google Scholar 

  24. J.F.V. Vincent, U.G.K. Wegst: Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33, 187 2004

    Article  Google Scholar 

  25. M.F. Ashby, Y.J.M. Brechet: Designing hybrid materials. Acta Mater. 51, 5801 2003

    Article  CAS  Google Scholar 

  26. A.C. Neville: Biology of Fibrous Composites: Development beyond the Cell Membrane The University Press Cambridge 1993

    Book  Google Scholar 

  27. P.B. Green, C.S. Steele, S.C. Rennich: Phyllotactic patterns: A biophysical mechanism for their origin. Ann. Bot. (London) 77, 515 1996

    Article  Google Scholar 

  28. R.S. Lakes: Materials with structural hierarchy. Nature 361, 511 1993

    Article  Google Scholar 

  29. S.V. Lomov, G. Huysmans: Hierarchy of textile structures and architecture of fabric geometric models. Text. Res. J. 71, 534 2001

    Article  CAS  Google Scholar 

  30. G.E. Padawer, N. Beecher: On the strength and stiffness of planar reinforced plastic resins. Polym. Eng. Sci. 10, 185 1970

    Article  CAS  Google Scholar 

  31. G. Jeronimidis: Wood, one of nature’s challenging composites in The Mechanical Properties of Biological Materials, edited by J.F.V. Vincent and J.D. Currey (The University Press, Cambridge, UK, 1980) p. 169

  32. J.L. Katz: The structure and biomechanics of bone in The Mechanical Properties of Biological Materials, edited by J.F.V. Vincent and J.D. Currey (The University Press, Cambridge, UK, 1980) p. 137

    Google Scholar 

  33. K.S. Tai, M. Dao, S. Suresh, A. Palazoglu, C. Ortiz: Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 454 2007

    Article  CAS  Google Scholar 

  34. D.G. Hepworth, J.F.V. Vincent, G. Stringer, G. Jeronimidis: Variations in the morphology of wood structure can explain why hardwood species of similar density have very different resistances to impact and compressive loading. Philos. Trans. R. Soc. London, Ser. A 360, 255 2002

    Article  Google Scholar 

  35. U. Kull, A. Herbig, F. Otto: Construction and economy of plant stems as revealed by use of the bic-method. Ann. Bot. (London) 69, 327 1992

    Article  Google Scholar 

  36. N.M. Pugnoy, R.S. Ruoff: Quantized fracture mechanics. Philos. Mag. 84, 2829 2004

    Article  Google Scholar 

  37. H. Gao, B. Ji, I.L. Jaeger, E. Arzt, P. Fratzl: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. USA 100, 5597 2003

    Article  CAS  Google Scholar 

  38. P. Zioupos, J.D. Currey, A.J. Sedman: An examination of the micromechanics of failure of bone and antler by acoustic emission tests and laser scanning confocal microscopy. Med. Eng. Phys. 16, 203 1994

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Olga and Nikolay Bogatyrev for my education in TRIZ and the data in Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian F.V. Vincent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, J.F. Biomimetic materials. Journal of Materials Research 23, 3140–3147 (2008). https://doi.org/10.1557/JMR.2008.0380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0380

Navigation