Skip to main content
Log in

Radiation detector materials: An overview

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Due to events of the past two decades, there has been new and increased usage of radiation-detection technologies for applications in homeland security, nonproliferation, and national defense. As a result, there has been renewed realization of the materials limitations of these technologies and greater demand for the development of next-generation radiation-detection materials. This review describes the current state of radiation-detection material science, with particular emphasis on national security needs and the goal of identifying the challenges and opportunities that this area represents for the materials-science community. Radiation-detector materials physics is reviewed, which sets the stage for performance metrics that determine the relative merit of existing and new materials. Semiconductors and scintillators represent the two primary classes of radiation detector materials that are of interest. The state-of-the-art and limitations for each of these materials classes are presented, along with possible avenues of research. Novel materials that could overcome the need for single crystals will also be discussed. Finally, new methods of material discovery and development are put forward, the goal being to provide more predictive guidance and faster screening of candidate materials and thus, ultimately, the faster development of superior radiation-detection materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I
TABLE II
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. J.C. McDonald, B.M. Coursey, M. Carter: Detecting illicit radioactive sources. Phys. Today 57(11), 36 2004

    Article  Google Scholar 

  2. T. Gozani: The role of neutron based inspection techniques in the post 9/11/01 era. Nucl. Instrum. Methods Phys. Res. B 213, 460 2004

    Article  CAS  Google Scholar 

  3. J.O. Lubenau, D.J. Strom: Safety and security of radiation sources in the aftermath of 11 September 2001. Health Phys. 83(2), 155 2002

    Article  CAS  Google Scholar 

  4. A. Perez-Andujar, L. Pibida: Performance of CdTe, HPGe and NaI(Tl) detectors for radioactivity measurements. Appl. Radiat. Isot. 60, 41 2004

    Article  CAS  Google Scholar 

  5. W.J. Price: Nuclear Radiation Detection 2nd ed. McGraw-Hill New York 1964

    Google Scholar 

  6. G.F. Knoll: Radiation Detection and Measurement, 3rd ed. John Wiley & Sons New York 1999

    Google Scholar 

  7. W.R. Leo: Techniques for Nuclear and Particle Physics Experiments 2nd ed. Springer-Verlag Berlin 1994

    Book  Google Scholar 

  8. P.A. Rodnyi: Physical Processes in Inorganic Scintillators CRD Press Boca Raton, FL 1997

    Google Scholar 

  9. V. Cobut, L. Cirioni, J.P. Patau: Accurate transport simulation of electron tracks in the energy range 1 keV–4 MeV. Nucl. Instrum. Methods Phys. Res. B 215, 57 2004

    Article  CAS  Google Scholar 

  10. J.D. Martinez, R. Mayol, F. Salvat: Monte Carlo simulation of kilovolt electron transport in solids. J. Appl. Phys. 67(6), 2955 1990

    Article  Google Scholar 

  11. G.W. Fraser, A.F. Abbey, A. Holland, K. McCarthy, A. Owens, A. Wells: The x-ray energy response of silicon. Part A. Theory. Nucl. Instrum. Methods Phys. Res. A 350(1–2), 368 1994

    Article  Google Scholar 

  12. F. Gao, L.W. Campbell, R. Devanathan, Y. Xie, L.R. Corrales, A.J. Peurrung, W.J. Weber: Monte Carlo method for simulating γ-ray interaction with materials: A case study on Si. Nucl. Instrum. Methods Phys. Res., Sect. A 579(1), 292 2007

    Article  CAS  Google Scholar 

  13. F. Gao, L.W. Campbell, R. Devanathan, Y.L. Xie, Y. Zhang, A.J. Peurrung, W.J. Weber: Gamma-ray interaction in Ge: Monte Carlo simulation. Nucl. Instrum. Methods Phys. Res., Sect. B 255, 286 2007

    Article  CAS  Google Scholar 

  14. B.W. Blackburn, J.L. Jones, C.E. Moss, J.T. Mihalczo, A.W. Hunt, J.F. Harmon, S.M. Watson, J.T. Johnson: Utilization of actively-induced, prompt radiation emission for nonproliferation applications. Nucl. Instrum. Methods Phys. Res., Sect. B 261, 341 2007

    Article  CAS  Google Scholar 

  15. C.E. Moss, C.L. Hollas, G.W. McKinney, W.L. Myers: Comparison of active interrogation techniques. IEEE Trans. Nucl. Sci. 53(4), 2242 2006

    Article  Google Scholar 

  16. C. Fiorini, F. Perotti: Small prototype of Anger camera with submillimeter position resolution. Rev. Sci. Instrum. 76, 044303 2005

    Article  CAS  Google Scholar 

  17. M. Gmar, O. Gal, C.L. Goaller, O.P. Inanov, V.N. Potapov, V.E. Stepanov, F. Laine, F. Lamadie: Development of coded-aperture imaging with a compact gamma camera. IEEE Trans. Nucl. Sci. 51(4), 1682 2004

    Article  Google Scholar 

  18. Y.P. Kazachkov, D.S. Semenov, N.P. Goryacheva: Application of coded apertures in medical γ-ray cameras. Instrum. Exp. Tech. (USSR) 50, 267 2007

    Article  Google Scholar 

  19. C.E. Lehner, Z. Hong, F. Zhang: 4p Compton imaging using a 3-D position-sensitive CdZnTe detector via weighted list-mode maximum likelihood. IEEE Trans. Nucl. Sci. 51(4), 1618 2004

    Article  CAS  Google Scholar 

  20. K. Vetter, M. Burks, C. Cork, M. Cunningham, D. Chivers, E. Hull, T. Krings, H. Manini, L. Mihailescu, K. Nelson, D. Protic, J. Valentine, D. Wright: High-sensitivity Compton imaging with position-sensitive Si and Ge detectors. Nucl. Instrum. Methods Phys. Res. A 579, 363 2007

    Article  CAS  Google Scholar 

  21. E.R. Siciliano, J.H. Ely, R.T. Kouzes, B.D. Milbrath, J.E. Schweppe, D.C. Stromswold: Comparison of PVT and NaI(Tl) scintillators for vehicle portal monitor applications. Nucl. Instrum. Methods Phys. Res. A 550, 647 2005

    Article  CAS  Google Scholar 

  22. R. Venkataraman, S. Croft: Determination of plutonium mass using gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. A 505(1-2), 527 2003

    Google Scholar 

  23. M. Swoboda, R. Arlt, V. Gostilo, A. Lupilov, M. Majorov, M. Moszynski, A. Syntfeld: Spectral gamma detectors for hand-held radioisotope identification devices (RIDs) for nuclear security applications. IEEE Trans. Nucl. Sci. 52(6), 3111 2005

    Article  CAS  Google Scholar 

  24. R. Devanathan, L.R. Corrales, F. Gao, W.J. Weber: Signal variance in gamma-ray detections—A review. Nucl. Instrum. Methods Phys. Res. A 565(2), 637 2006

    Article  CAS  Google Scholar 

  25. U. Fano: On the theory of ionization yield of radiations in different substances. Phys. Rev. 70, 44 1946

    Article  CAS  Google Scholar 

  26. U. Fano: Ionization yield of radiations. 2. The fluctuations of the number of ions. Phys. Rev. 72, 26 1947

    Article  CAS  Google Scholar 

  27. D.T. Chow, M.A. Lindeman, M.F. Cunningham, M. Frank, T.W. Barbee, S.E. Labov: Gamma-ray spectrometers using a bulk Sn absorber coupled to a Mo/Cu multilayer superconducting transition edge sensor. Nucl. Instrum. Methods Phys. Res. A 444(1–2), 196 2000

    Article  Google Scholar 

  28. W. Van Roosbroeck: Theory of the yield and Fano factor of electron–hole pairs generated in semiconductors by high-energy particles. Phys. Rev. A 139, 1702 1965

    Article  Google Scholar 

  29. R.C. Alig: Scattering by ionization and phonon emission in semiconductors. II. Monte Carlo calculations. Phys. Rev. B 27, 968 1983

    Article  CAS  Google Scholar 

  30. F. Scholze, H. Henneken, P. Kuschnerus, H. Rabus, M. Richter, G. Ulm: Determination of the electron–hole pair creation energy for semiconductors from the spectral responsivity of photodiodes. Nucl. Instrum. Methods Phys. Res. A 439, 208 2000

    Article  CAS  Google Scholar 

  31. M. Amman, P.N. Luke: Optimization criteria for coplanar-grid detectors. IEEE Trans. Nucl. Sci. 46(3), 205 1999

    Article  CAS  Google Scholar 

  32. P.N. Luke, M. Amman, J.S. Lee, H. Yaver: Coplanar-grid CdZnTe detector with three-dimensional position sensitivity. Nucl. Instrum. Methods Phys. Res. A 439(2-3), 611 2000

    Google Scholar 

  33. F. Zhang, Z. He, D. Xu: Analysis of detector response using 3-D position-sensitive CZT gamma-ray spectrometers. IEEE Trans. Nucl. Sci. 51(6), 3098 2004

    Article  CAS  Google Scholar 

  34. M. Pomorski, E. Berdermann, A. Caragheorgheopol, M. Ciobanu, M. Ki, A. Martemmiyanov, C. Nebel, P. Mortiz: Development of single-crystal CVD-diamond detectors for spectroscopy and timing. Phys. Status Solidi A 203(12), 3152 2006

    Article  CAS  Google Scholar 

  35. A. Coche, P. Siffert: Lithium drifted silicon and germanium detectors in Semiconductor Detectors, edited by G. Bertolini and A. Coche (Elsevier-North Holland, Amsterdam, 1968)

  36. E. Sakai: Present status of room temperature semiconductor detectors. Nucl. Instrum. Methods Phys. Res. 196, 121 1982

    Article  CAS  Google Scholar 

  37. S. Friedrich: Nuclear diagnostics with cryogenic spectrometers. Nucl. Instrum. Methods Phys. Res. A 579, 157 2007

    Article  CAS  Google Scholar 

  38. R.D. Horansky, J.N. Ullom, J.A. Beall, W.B. Doriese, W.D. Duncan, L. Ferreira, G.C. Hilton, K.D. Irwin, C.D. Reintsema, L.R. Vale, B.L. Zink, A. Hoover, C.R. Rudy, D.M. Tournear, D.T. Vo, M.W. Rabin: Superconducting absorbers for use in ultra-high resolution gamma-ray spectrometers based on low temperature microcalorimeter arrays. Nucl. Instrum. Methods Phys. Res. A 579, 169 2007

    Article  CAS  Google Scholar 

  39. E.L. Hull, R.H. Pehl, J.R. Lathrop, P.L. Mann, R.B. Mashburn, B.E. Suttle, H.S. Miley, C.E. Aalseth, T.W. Bowyer, T.W. Hossbach: Mechanically cooled large-volume germanium detector systems for nuclear explosion monitoring in Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, Denver, CO (Los Alamos National Laboratory Report LA-UR-07-5613, Los Alamos, NM, 2007

  40. D.L. Upp, R.M. Keyser, T.R. Twomey: New cooling methods for HPGE detectors and associated electronics. J. Radioanal. Nucl. Chem. 264(1), 121 2005

    Article  CAS  Google Scholar 

  41. P.N. Luke, M. Amman, C. Tindall, J.S. Lee: Recent developments in semiconductor gamma-ray detectors. J. Radioanal. Nucl. Ch. 264(1), 145 2005

    Article  CAS  Google Scholar 

  42. A. Owens, A. Peacock: Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. A 531(2), 18 2004

    Article  CAS  Google Scholar 

  43. F. Zhang, Z. He: New readout electronics for 3-D position sensitive CdZnTe/HgI2 detector arrays. IEEE Trans. Nucl. Sci. 53(5), 3021 2006

    Article  CAS  Google Scholar 

  44. J.F. Butler, C.L. Lingren, F.P. Doty: Cd1−xZnxTe gamma-ray detectors. IEEE Trans. Nucl. Sci. 39(4), 605 1992

    Article  CAS  Google Scholar 

  45. G.A. Carini, G.S. Camarda, Z. Zhong, D.P. Siddons, A.E. Bolotnikov, G.W. Wright, B. Barber, C. Arnone, R.B. James: High-energy x-ray diffraction and topography investigation of CdZnTe. J. Electron. Mater. 34(6), 804 2006

    Article  Google Scholar 

  46. W.G. Sang, K.S. Wang, J.H. Min, J.Y. Teng, Q. Zhang, Y.B. Qian: A novel two-step chemical passivation process for CdZnTe detectors. Semicond. Sci. Technol. 20(5), 343 2005

    Article  CAS  Google Scholar 

  47. F. Zhang, Z. He, G.F. Knoll, D.K. Wehe, J.E. Berry: 3-D position sensitive CdZnTe spectrometer performance using third generation VAS/TAT readout electronics. IEEE Trans. Nucl. Sci. 52(5), 2009 2005

    Article  CAS  Google Scholar 

  48. M.R. Chu, S. Terterian, D. Ting: Role of zinc in CdZnTe radiation detectors. IEEE Trans. Nucl. Sci. 51(5), 2405 2004

    Article  CAS  Google Scholar 

  49. J.H. Greenberg: P–T–X phase equilibrium and vapor pressure scanning of non-stoichiometry in the Cd–Zn–Te system. Prog. Cryst. Growth Charact. Mater. 47(2-3), 196 2003

    Google Scholar 

  50. S. Terterian, M. Chu, D. Ting: Distribution of the high resistivity region in CdZnTe and its effects on gamma-ray detector performance. J. Electron. Mater. 33(6), 640 2004

    Article  CAS  Google Scholar 

  51. C. Szeles: Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors. IEEE Trans. Nucl. Sci. 51(3), 1242 2004

    Article  CAS  Google Scholar 

  52. K. Kurvinen, P. Smolander, R. Pollanen, S. Kuutkankorpi, M. Kettunen, J. Lyytinen: Design of a radiation surveillance unit for an unmanned aerial vehicle. J. Environ. Radioact. 81(1), 1 2005

    Article  CAS  Google Scholar 

  53. P. Mortreau, R. Berndt: Determination of 235U enrichment with a large volume CZT detector. Nucl. Instrum. Methods Phys. Res., Sect. A 556, 219 2006

    Article  CAS  Google Scholar 

  54. J.C. Ugucioni, M. Ferreira, F. Fajardo, M. Mulato: Growth of mercuric iodide crystals. Braz. J. Phys. 36(2A), 274 2006

    Article  Google Scholar 

  55. I.B. Oliveira, F.E. Costa, M.J. Armelin, L.P. Cardoso, M.M. Hamada: Purification and growth of PbI2 crystals: Dependence of the radiation response on the PbI2 crystal purity. IEEE Trans. Nucl. Sci. 49(4), 1968 2002

    Article  CAS  Google Scholar 

  56. D. Nason, L. Keller: The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport. J. Cryst. Growth 156(3), 221 1995

    Article  CAS  Google Scholar 

  57. M. Matsumoto, K. Hitomi, T. Shoji, Y. Hiratate: Bismuth tri-iodide crystal for nuclear radiation detectors. IEEE Trans. Nucl. Sci. 49(5), 2517 2002

    Article  CAS  Google Scholar 

  58. V. Kozlov, M. Leskela, H. Sipila: Annealing and characterisation of TlBr crystals for detector applications. Nucl. Instrum. Methods Phys. Res. A 546(1–2), 200 2005

    Article  CAS  Google Scholar 

  59. T. Onodera, K. Hitomi, T. Shoji, Y. Hiratate, H. Kitaguchi: Spectroscopic performance of pixellated thallium bromide detectors. IEEE Trans. Nucl. Sci. 52(5), 1999 2005

    Article  CAS  Google Scholar 

  60. L.J. Meng, Z. He, B. Alexander, J. Sandoval: Spectroscopic performance of thick HgI2 detectors. IEEE Trans. Nucl. Sci. 53(3), 1706 2006

    Article  CAS  Google Scholar 

  61. A.J. Peurrung: Recent developments in neutron detection. Nucl. Instrum. Methods Phys. Res. A 443(2–3), 400 2000

    Article  Google Scholar 

  62. C. Petrillo: Solid state neutron detectors. Nucl. Instrum. Methods Phys. Res. A 378, 541 1996

    Article  CAS  Google Scholar 

  63. D.S. McGregor: Semi-insulating bulk GaAs as a semiconductor thermal-neutron imaging device. Nucl. Instrum. Methods Phys. Res. A 380, 271 1996

    Article  CAS  Google Scholar 

  64. C. Manfredotti, A.L. Giudice, F. Fasolo, E. Vittone, C. Paolini, F. Fizzotti, A. Zanini, G. Wagner, C. Lanzieri: SiC detectors for neutron monitoring. Nucl. Instrum. Methods Phys. Res. A 552(1–2), 131 2005

    Article  CAS  Google Scholar 

  65. R.W. Flammang, J.G. Seidel, F.H. Ruddy: Fast neutron detection with silicon carbide semiconductor. Nucl. Instrum. Methods Phys. Res. A 479, 177 2007

    Article  CAS  Google Scholar 

  66. M. Marinelli, E. Milani, G. Prestopino, M. Scoccia, A. Tucciarone, G. Verona-Rinati, M. Angelone, M. Pillon, D. Lattanzi: High performance 6LiF–diamond thermal neutron detectors. Appl. Phys. Lett. 89(14), 143509 (2006, DOI: 10.1063/1.2356993)

  67. J.H. Chao, H. Niu: Measurement of neutron dose by a moderating germanium detector. Nucl. Instrum. Methods Phys. Res. A 385(1), 161 1997

    Article  CAS  Google Scholar 

  68. D.S. McGregor, J.T. Lindsay, R.W. Olsen: Thermal neutron detection with cadmium1−x zincx telluride semiconductor detectors. Nucl. Instrum. Methods Phys. Res. A 381(2–3), 498 1996

    Article  Google Scholar 

  69. A.N. Caruso, P.A. Dowben, S. Balkir, N. Schemm, K. Osberg, R.W. Fairchild, O.B. Flores, S. Balaz, A.D. Harken, B.W. Robertson, J.I. Brand: The all boron carbide diode neutron detector: Comparison with theory. Mater. Sci. Eng., B 135(2), 129 2006

    Article  CAS  Google Scholar 

  70. M. Berheide, B. Roscoe: Scintillators for Geophysical Exploration, 9th International Conference on Inorganic Scintillators and Their Applications (SCINT 2007) Wake Forest University, Winston-Salem, North Carolina, 4–8 June 2007 (IEEE, Piscataway, NJ, 2007

  71. F. Wilkerson: Scintillators, in Emission Tomography: The Fundamentals of PET and SPECT edited by M. Wemicak and J. Aarvold (Elsevier Academic Press, St. Louis, MO, 2004) p. 229

  72. P. Dorenbos, J.T.M. de Haas, C.W.E. van Eijk: Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Trans. Nucl. Sci. 42, 2190 1995

    Article  CAS  Google Scholar 

  73. M. Moszynski: Energy resolution of scintillation detectors. Proc. SPIE,5922, 592205 2005

    Google Scholar 

  74. W.W. Moses: Current trends in scintillator detectors and materials. Nucl. Instrum. Methods Phys. Res. A 487, 123 2002

    Article  CAS  Google Scholar 

  75. C.W.E. van Eijk, P. Dorenbos, E.V.D. van Loef, K. Kramer, H.U. Gudel: Energy resolution of some new inorganic-scintillator gamma-ray detectors. Radiat. Meas. 32, 521 2001

    Article  Google Scholar 

  76. J.E. Jaffe, D.V. Jordan, A.J. Peurrung: Energy nonlinearity in radiation detection materials: Causes and consequences. Nucl. Instrum. Methods Phys. Res. A 570, 72 2007

    Article  CAS  Google Scholar 

  77. J.D. Valentine, B.D. Rooney: Design of a Compton spectrometer experiment for studying scintillator nonlinearity and intrinsic energy resolution. Nucl. Instrum. Methods Phys. Res. A 353, 37 1994

    Article  CAS  Google Scholar 

  78. W. Mengesha, T.D. Taulbee, B.D. Rooney, J.D. Valentine: Light yield nonproportionality of CsI(Tl), CsI(Na), and YAP. IEEE Trans. Nucl. Sci. 45(3), 456 1998

    Article  CAS  Google Scholar 

  79. J.D. Valentine, B.D. Rooney, P. Dorenbos: More on the scintillation response of NaI(Tl). IEEE Trans. Nucl. Sci. 45(3), 1750 1998

    Article  CAS  Google Scholar 

  80. A. Lempicki, A.J. Wojtowicz, E. Bermin: Fundamental limits of scintillator performance. Nucl. Instrum. Methods Phys. Res. A 333, 304 1993

    Article  CAS  Google Scholar 

  81. D.J. Robbins: On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. J. Electrochem. Soc. 127, 2694 1980

    Article  CAS  Google Scholar 

  82. P.A. Rodnyi, P. Dorenbos, C.W.E. van Eijk: Energy-loss in inorganic scintillators. Phys. Status Solidi B 187, 15 1995

    Article  CAS  Google Scholar 

  83. P. Dorenbos: Light output and energy resolution of Ce3+-doped scintillators. Nucl. Instrum. Methods Phys. Res. A 486(1–2), 208 2002

    Article  Google Scholar 

  84. J.B. Birks: The Theory and Practice of Scintillation Counting Pergamon Press Oxford 1964

    Google Scholar 

  85. J. Ely, R. Kouzes, J. Schweppe, E. Siciliano, D. Strachan, D. Weier: The use of energy windowing to discriminate SNM from NORM in radiation portal monitors. Nucl. Instrum. Methods Phys. Res. A 560, 373 2006

    Article  CAS  Google Scholar 

  86. R. Hofstadter: Alkali halide scintillation counters. Phys. Rev. 74, 100 1948

    Article  CAS  Google Scholar 

  87. R. Hofstadter: Twenty-five years of scintillation counting. IEEE Trans. Nucl. Sci. 22(1), 13 1975

    Article  Google Scholar 

  88. J.A. McIntyre, R. Hofstadter: Measurement of gamma-ray energies with one crystal. Phys. Rev. 78, 617 1950

    Article  CAS  Google Scholar 

  89. P. Harihar, A.R. Knudson, W.J. Stapor, A.B. Campbell: Rise-time spectroscopy of nuclear radiations in a CsI(Tl) scintillator. Nucl. Instrum. Methods Phys. Res. A 283, 62 1989

    Article  Google Scholar 

  90. M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, S.O. Flyckt: Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44(3), 1052 1997

    Article  CAS  Google Scholar 

  91. M.J. Weber, R.R. Monchamp: Luminescence of Bi4Ge3O12 spectral and decay properties. J. Appl. Phys. 44(12), 5495 1973

    Article  CAS  Google Scholar 

  92. M. Laval, M. Moszynski, R. Allemand, E. Cormoreche, P. Guinet, R. Ordu, J. Vacher: Barium fluoride—Inorganic scintillator for subnanosecond timing. Nucl. Instrum. Methods Phys. Res., Sect. A 206, 169 1983

    Article  CAS  Google Scholar 

  93. A.V. Golovin, N.G. Zakharov, P.A. Rodnyi: Mechanism of short-wavelength luminescence of barium fluoride. Opt. Spectrosc. 65(1), 102 1988

    Google Scholar 

  94. R. Novotny: Inorganic scintillators—A basic material for instrumentation in physics. Nucl. Instrum. Methods Phys. Res., Sect. A 537, 1 2005

    Article  CAS  Google Scholar 

  95. C.W.E. van Eijk: Fast lanthanide doped inorganic scintillators. SPIE Proc. 2706, 158 1996

    Article  Google Scholar 

  96. S. Baccaro, K. Blazek, F. de Notaristefani, P. Maly, J.A. Mares, R. Pani, R. Pellgrini, A. Soluri: Scintillation properties of YAP:Ce. Nucl. Instrum. Methods Phys. Res., Sect. A 361, 209 1995

    Article  CAS  Google Scholar 

  97. M. Moszynski, M. Kapusta, D. Wolski, W. Klamra, B. Cederwall: Properties of the YAP:Ce scintillator. Nucl. Instrum. Methods Phys. Res., Sect. A 404, 157 1998

    Article  CAS  Google Scholar 

  98. A. Del Guerra, F. de Notaristefani, G. Di Domenico, G. Zavattini: Measurement of absolute light yield and determination of a lower limit for the light attenuation length for YAP:Ce crystal. IEEE Trans. Nucl. Sci. 44(6), 2415 1997

    Article  Google Scholar 

  99. I. Vilardi, A. Braem, E. Chesi, F. Ciocia, N. Colonna, F. Corsi, F. Cusanno, R. De Leo, A. Dragone, F. Garibaldi, C. Joram, L. Lagamba, S. Marrone, E. Nappi, J. Seguinot, G. Tagliente, A. Valentini, P. Weilhammer, H. Zaidi: Optimization of the effective light attenuation length of YAP:Ce and LYSO:Ce crystals for a novel geometrical PET concept. Nucl. Instrum. Methods Phys. Res., Sect. A 564(1), 506 2006

    Article  CAS  Google Scholar 

  100. A.J. Wojtowicz: Scintillation mechanism: The significance of variable valence and electron-lattice coupling in R.E.-activatedscintillators in Proceedings of the International Conference on Inorganic Scintillators and Their Applications (SCINT95), edited by P. Dorenbos and C.W.E. van Eijk (Delft University Press, The Netherlands, 1996), p. 95

  101. A. Lempicki, C. Brecher, D. Wisniewski, E. Zych, A.J. Wohtowicz: Lutetium aluminate: Spectroscopic and scintillation properties. IEEE Trans. Nucl. Sci. 43(3), 1316 1996

    Article  CAS  Google Scholar 

  102. W.W. Moses, S.E. Derenzo, A. Fyodorov, M. Korzhik, A. Gektin, B. Minkov, V. Aslanov: LuAlO3:Ce—A high speed scintillator for gamma detection. IEEE Trans. Nucl. Sci. 42(4), 275 1995

    Article  CAS  Google Scholar 

  103. K.S. Shah, P. Bennett, M.R. Squillante: Gamma-ray detection properties of lutetium aluminate scintillators. IEEE Trans. Nucl. Sci. 43(3), 1267 1996

    Article  CAS  Google Scholar 

  104. M. Balcerzyk, M. Moszynski, M. Kapusta, D. Wolski: YSO, LSO, GSO and LGSO: A study of energy resolution and nonproportionality. IEEE Trans. Nucl. Sci. 47(4), 1319 2000

    Article  CAS  Google Scholar 

  105. C.L. Melcher, J.S. Schweitzer: A promising new scintillator—Cerium-doped lutetium oxyorthosilicate. Nucl. Instrum. Methods Phys. Res. A 314, 212 1992

    Article  Google Scholar 

  106. K. Kurashige, A. Gunji, M. Kamada, N. Shimura, H. Ishibashi, K. Yoshida, N. Senguttuvan, K. Sumiya, S. Shimizu, H. Murayama: Large GSO single crystals with a diameter of 100 mm and their scintillation performance. IEEE Trans. Nucl. Sci. 51(3), 742 2004

    Article  CAS  Google Scholar 

  107. N.J. Cherepy, G. Hull, A.D. Drobshoff, S.A. Payne, E.V. Van Leof, C.M. Wilson, K.S. Shah, U.N. Roy, A. Burger, L.A. Boatner, W-S. Choong, W.W. Moses: Strontium and barium iodide high light yield scintillators. Appl. Phys. Lett. 91, 083508 2008

    Article  CAS  Google Scholar 

  108. O. Guillot-Noel, J.T.M. de Haas, P. Dorenbos, C.W.E. van Eijk, K. Kramer, H.U. Gudel: Optical and scintillation properties of cerium-doped LaCl3, LuBr3, and LuCl3. J. Lumin. 85, 21 1999

    Article  CAS  Google Scholar 

  109. K.W. Kramer, P. Dorenbos, H.U. Gudel, C.W.E. van Eijk: Development and characterizations of highly efficient new cerium doped rare earth halide scintillator materials. J. Mater. Chem. 16, 2773 2006

    Article  Google Scholar 

  110. J.C. van’ tSpijker, P. Dorenbos, J.T.M. de Haas, C.W.E. van Eijk, H.U. Gudel, K. Kramer: Scintillation properties of K2LaCl5 with Ce doping. Radiat. Meas. 24(4), 379 1995

    Article  Google Scholar 

  111. C.W.E. van Eijk: New inorganic scintillators—Aspects of energy resolution. Nucl. Instrum. Methods Phys. Res. A 471, 244 2001

    Article  Google Scholar 

  112. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. Kramer, H.U. Gudel: Scintillation properties of LaCl3:Ce3+ crystals: Fast, efficient, and high-energy resolution scintillators. IEEE Trans. Nucl. Sci. 48(3), 341 2001

    Article  Google Scholar 

  113. K.S. Shah, J. Glodo, M. Klugerman, W. Higgins, T. Gupta, P. Wong: High energy resolution scintillation spectrometers. IEEE Trans. Nucl. Sci. 51(5), 2395 2004

    Article  CAS  Google Scholar 

  114. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. Kramer, H.U. Gudel: High-energy-resolution scintillator: Ce3+ activated LaBr3. Appl. Phys. Lett. 79(10), 1573 2001

    Article  CAS  Google Scholar 

  115. A. Bessiere, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, H.U. Gudel, C. Mello de Donega, A. Meijerink: Luminescence and scintillation properties of the small band gap compound LaI3:Ce3+. Nucl. Instrum. Methods Phys. Res. A 537, 22 2005

    Article  CAS  Google Scholar 

  116. M.D. Birowosuto, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, H.U. Gudel: High-light-output scintillator for photodiode readout: LuI3:Ce3+. J. Appl. Phys. 99, 123520 2006

    Article  CAS  Google Scholar 

  117. M.D. Birowosuto, P. Dorenbos, C.W.E. van Eijk: PrBr3:Ce3+: A new fast lanthanide trihalide scintillator. IEEE Trans. Nucl. Sci. 53(5), 3028 2006

    Article  CAS  Google Scholar 

  118. J. Glodo, W.M. Higgins, E.V.D. van Loef, K.S. Shah: GdI3:Ce—A new gamma and neutron scintillator in Proceedings of the IEEE Nuclear Science Symposium Medical Imaging Conference, San Diego, (2006), p. 1574

  119. K.S. Shah, J. Glodo, W. Higgins, E.V.D. van Loef, W.W. Moses, S.E. Derenzo, M.J. Weber: CeBr3 scintillators for gamma-ray spectroscopy. IEEE Trans. Nucl. Sci. 52(6), 3157 2005

    Article  CAS  Google Scholar 

  120. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, H.U. Gudel: Optical and scintillation properties of pure and Ce3+ doped GdBr3. Opt. Commun. 189, 297 2001

    Article  Google Scholar 

  121. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, H.U. Gudel: Properties and mechanism of scintillation in LuCl3:Ce3+ and LuBr3:Ce3+ crystals. Nucl. Instrum. Methods Phys. Res. A 496, 138 2003

    Article  Google Scholar 

  122. A. Iltis, M.R. Mayhugh, P. Menge, C.M. Rozsa, O. Selles, V. Solovyev: Lanthanum halide scintillators: Properties and applications. Nucl. Instrum. Methods Phys. Res. A 563, 359 2006

    Article  CAS  Google Scholar 

  123. B.D. Milbrath, R.C. Runkle, T.W. Hossbach, W.R. Kaye, E.A. Lepel, B.S. McDonald, L.E. Smith: Characterization of alpha contamination in lanthanum trichloride scintillators using coincidence measurements. Nucl. Instrum. Methods Phys. Res. A 547(2–3), 504 2005

    Article  CAS  Google Scholar 

  124. B.D. Milbrath, J.I. McIntyre, R.C. Runkle, L.E. Smith: Contamination studies of LaCl3:Ce scintillators. IEEE Trans. Nucl. Sci. 53(5), 3031 2006

    Article  CAS  Google Scholar 

  125. A. Kuhn, S. Surti, J.S. Karp, G. Muehllehner, F.M. Newcomer, R. VanBerg: Performance assessment of pixelated LaBr3 detector modules for time-of-flight PET. IEEE Trans. Nucl. Sci. 53(3), 1090 2006

    Article  CAS  Google Scholar 

  126. R. Gonzalez, J.M. Perez, O. Vela, E. de Burgos: Performance comparison of a large volume CZT semiconductor detector and a LaBr3(Ce) scintillator detector. IEEE Trans. Nucl. Sci. 53(4), 2409 2006

    Article  CAS  Google Scholar 

  127. B.D. Milbrath, B.J. Choate, J.E. Fast, W.K. Hensley, R.T. Kouzes, J.E. Schweppe: Comparison of LaBr3:Ce and NaI(Tl) scintillators for radio-isotope identification devices. Nucl. Instrum. Methods Phys. Res., Sect. A 572, 774 2007

    Article  CAS  Google Scholar 

  128. A. Syntfeld, R. Arlt, V. Gostilo, A. Loupilov, M. Moszynski, A. Nassalski, M. Swoboda, D. Wolski: Comparison of a LaBr3(Ce) scintillation detector with a large volume CdZnTe detector. IEEE Trans. Nucl. Sci. 53(6), 3938 2006

    Article  CAS  Google Scholar 

  129. S. Kraft, E-J. Buis, E. Maddox, A. Owens, F. Quarati, D. Pieter, A. Bos, J.T.M. de Haas, H. Brouwer, C. Dathy, V. Ouspenski, S. Brandenburg, R. Ostendorf Development and characterization of large La-halide gamma-ray scintillators for future planetary missions. IEEE Trans. Nucl. Sci. 54(4), 873 2007

    Article  CAS  Google Scholar 

  130. D. Konishi, Y. Uozumi, H. Yoshida, M. Matoba: Response of GSO scintillator to thermal neutrons. Nucl. Instrum. Methods Phys. Res., Sect. A 420, 467 1999

    Article  CAS  Google Scholar 

  131. P.L. Reeder: Neutron detection using GSO scintillator. Nucl. Instrum. Methods Phys. Res., Sect. A 340, 371 1994

    Article  CAS  Google Scholar 

  132. V. Ryzhikov, L. Nagornaya, V. Volkov, V. Chernikov, O. Zelenskaya: Thermal neutron detectors based on complex oxide crystals. Nucl. Instrum. Methods Phys. Res., Sect. A 486, 156 2002

    Article  CAS  Google Scholar 

  133. G.I. Britvich, V.G. Vasil’Chenko, Y.V. Gilitsky, A.P. Chubenko, A.E. Kushnirenko, E.A. Mamidzhanyan, V.P. Pavluchenko, V.A. Pikalov, V.A. Romakhin, A.P. Soldatov, O.V. Sumaneev, S.K. Chernichenko, I.V. Shein, A.L. Shepetov: A neutron detector on the basis of a boron-containing plastic scintillator. Nucl. Instrum. Methods Phys. Res., Sect. A 550, 343 2005

    Article  CAS  Google Scholar 

  134. S. Normand, B. Mouanda, S. Haan, M. Louvel: Discrimination methods between neutron and gamma rays for boron loaded plastic scintillators. Nucl. Instrum. Methods Phys. Res., Sect. A 484, 342 2002

    Article  CAS  Google Scholar 

  135. Scintillation crystals., http://www.scionixusa.com/pages/navbar/scin_crystals.html (accessed March 6, 2007).

  136. A. Syntfeld, M. Moszynski, R. Arlt, M. Balcerzyk, M. Kapusta, M. Majorov, R. Marcinkowski, P. Schotanus, M. Swoboda, D. Wolski: 6Li(Eu) in neutron and γ-ray spectrometry—A highly sensitive thermal neutron detector. IEEE Trans. Nucl. Sci. 52(6), 3151 2005

    Article  CAS  Google Scholar 

  137. C.W.E. van Eijk, A. Bessiere, P. Dorenbos: Inorganic thermalneutron scintillators. Nucl. Instrum. Methods Phys. Res., Sect. A 529, 260 2004

    Article  CAS  Google Scholar 

  138. M. Bliss, R.L. Brodzinski, R.A. Craig, B.D. Geelhood, M.A. Knopf, H.S. Miley, R.W. Perkins, P.L. Reeder, D.S. Sunberg, R.A. Warner, N.A. Wogman: Glass-fiber-based neutron detectors for high- and low-flux environments. Proc. SPIE, 2551, 108 1995

    Article  CAS  Google Scholar 

  139. M. Ishii, Y. Kuwano, T. Asai, S. Asaba, M. Kawamura, N. Senguttuvan, T. Hayashi, M. Kobayashi, M. Nikl, S. Hosoya, K. Sakai, T. Adachi, T. Oku, H.M. Shimizu: Boron based oxide scintillation glass for neutron detection. Nucl. Instrum. Methods Phys. Res., Sect. A 539, 282 2005

    Article  CAS  Google Scholar 

  140. J.P. Chaminade, O. Viraphong, F. Guillen, C. Fouassier, B. Czirr: Crystal growth and optical properties of new neutron detectors Ce3+:6LiR(BO3)3 (R = Gd, Y). IEEE Trans. Nucl. Sci. 48(4), 1158 2001

    Article  CAS  Google Scholar 

  141. V.V. Chernikov, M.F. Dubovik, V.P. Gavrylyuk, B.V. Grinyov, L.A. Grin, T.I. Korshikova, A.N. Shekhovtsov, A.P. Sysoeva, A.V. Tolmachev, O.V. Zelenskaya: Peculiarities of scintillation parameters of some complex composition borate single crystals. Nucl. Instrum. Methods Phys. Res. A 498, 424 2003

    Article  CAS  Google Scholar 

  142. C.M. Combes, P. Dorenbos, R.W. Hollander, C.W.E. van Eijk: A thermal-neutron scintillator with n/g discrimination. Nucl. Instrum. Methods Phys. Res. A 416, 364 1998

    Article  CAS  Google Scholar 

  143. P.L. Reeder, S.M. Bowyer: Neutron/gamma discrimination in LiBaF3 scintillator. J. Radioanal. Nucl. Chem. 248(3), 707 2001

    Article  CAS  Google Scholar 

  144. A. Bessiere, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, H.U. Gudel: Luminescence and scintillation properties of Cs2LiYCl6:Ce3+ for g and neutron detection. Nucl. Instrum. Methods Phys. Res. A 537, 242 2005

    Article  CAS  Google Scholar 

  145. A. Bessiere, P. Dorenbos, C.W.E. van Eijk, K.W. Kramer, H.U. Gudel: New thermal neutron scintillators: Cs2LiYCl6:Ce3+ and Cs2LiYBr6:Ce3+. IEEE Trans. Nucl. Sci. 51(5), 2970 2004

    Article  CAS  Google Scholar 

  146. M. Nikl: Scintillation detectors for x-rays. Meas. Sci. Technol. 17, R37 2006

    Article  CAS  Google Scholar 

  147. W. Rossner, B.C. Grabmaier: Phosphors for x-ray detectors in computed tomography. J. Lumin. 48–49, 29 1991

    Article  Google Scholar 

  148. C.W.E. van Eijk: Inorganic scintillators in medical imaging detectors. Nucl. Instrum. Methods Phys. Res. A 509, 17 2003

    Article  CAS  Google Scholar 

  149. C. Greskovich, S. Duclos: Ceramic scintillators. Annu. Rev. Mater. Sci. 27, 69 1997

    Article  CAS  Google Scholar 

  150. A. Lempicki, C. Brecher, P. Szupryczynski, H. Lingertat, V.V. Nagarkar, S.V. Tipnis, S.R. Miller: A new lutetia-based ceramic scintillator for x-ray imaging. Nucl. Instrum. Methods Phys. Res. A 488, 579 2002

    Article  CAS  Google Scholar 

  151. H. Yamada, A. Suzuki, Y. Uchida, M. Yoshida, H. Yamamoto: A scintillator Gd2O2S:Pr,Ce,F for x-ray computed tomography. J. Electrochem. Soc. 136(9), 2713 1989

    Article  CAS  Google Scholar 

  152. E.V. van Leof, W.M. Higgins, J. Glodo, C. Brecher, A. Lempicki, V. Venkataramani, W.W. Moses, S.E. Derenzo, K.S. Shah: Scintillation properties of SrHfO3:Ce3+ and BaHfO3:Ce3+ ceramics. IEEE Trans. Nucl. Sci. 54(3), 741 2007

    Article  CAS  Google Scholar 

  153. Y. Ji, D. Jiang, J. Shi: La2Hf2O7:Ti4+ ceramic scintillator for x-ray imaging. J. Mater. Res. 20, 567 2005

    Article  CAS  Google Scholar 

  154. Z.S. Macedo, R.S. Silva, M.E.G. Valerio, A.L. Martinez, A.C. Hernandes: Laser-sintered bismuth germanate ceramics as scintillator devices. J. Am. Ceram. Soc. 87(6), 1076 2004

    Article  CAS  Google Scholar 

  155. C. Mansuy, J-M. Nedelec, R. Machiou: Molecular design of inorganic scintillators: From alkoxides to scintillating materials. J. Mater. Chem. 14, 3274 2004

    Article  CAS  Google Scholar 

  156. A. Garcia-Murillo, C. Le Luyer, C. Dujardin, T. Martin, C. Garapon, C. Pedrini, J. Mugnier: Elaboration and scintillation properties of Eu3+-doped Gd2O3 and Lu2O3 sol-gel films. Nucl. Instrum. Methods Phys. Res. A 486, 181 2002

    Article  CAS  Google Scholar 

  157. K. Lennstrom, S.J. Limmer, G. Cao: Synthesis of cadmium tungstate films via sol-gel processing. Thin Solid Films 434, 55 2003

    Article  CAS  Google Scholar 

  158. H. Shang, Y. Wang, B.D. Milbrath, M. Bliss, G. Cao: Doping effects in nanostructured cadmium tungstate scintillation films. J. Lumin. 121, 527 2006

    Article  CAS  Google Scholar 

  159. H-J. Im, C. Willis, S. Saengkerdsub, R. Makote, M.D. Pawel, S. Dai: Scintillators for alpha and neutron radiations synthesized by room temperature sol-gel processing. J. Sol-Gel Sci. Technol. 32, 117 2004

    Article  CAS  Google Scholar 

  160. D.W. Cooke, J.K. Lee, B.L. Bennett, J.R. Groves, L.G. Jacobsohn, E.A. McKigney, R.E. Muenchausen, M. Nastasi, K.E. Sickafus, M. Tang, J.A. Valdez, J.Y. Kim, K.S. Hong: Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5:Ce nanophosphors. Appl. Phys. Lett. 88, 103 2006

    Article  CAS  Google Scholar 

  161. W. Jia, H. Liu, S.P. Felofilov, R.S. Meltzer, J. Jiao: Spectroscopic study of Eu3+-doped and Eu3+,Y3+-codoped SiO2 sol-gel glasses. J. Alloys Compd. 311, 11 2000

    Article  CAS  Google Scholar 

  162. R.S. Meltzer, W.M. Yen, H. Zheng, S.P. Feofilov, M.J. Dejneka, B. Tissue, H.B. Yuan: Effect of the matrix on the radiative lifetimes of rare earth doped nanoparticles embedded in matrices. J. Lumin. 94–95, 217 2001

    Article  Google Scholar 

  163. W. Strek, E. Zych, D. Hreniak: Size effects on optical properties of Lu2O3:Eu3+ nanocrystallites. J. Alloys Compd. 344, 332 2002

    Article  CAS  Google Scholar 

  164. S.Z. Shmurak, G.K. Strukova, I.M. Smyt’ko, N.V. Klassen, N.P. Kobelev, S.E. Derenzo, M.J. Weber: Studies of nanocrystalline rare earth gallate and aluminate scintillators prepared by a new method. Nucl. Instrum. Methods Phys. Res., Sect. A 537, 149 2005

    Article  CAS  Google Scholar 

  165. I.H. Campbell, B.K. Crone: Quantum-dot/organic semiconductor composites for radiation detection. Adv. Mater. 18, 77 2006

    Article  CAS  Google Scholar 

  166. S.E. Létant, T.F. Wang: Semiconductor quantum dot scintillation under gamma-ray irradiation. Nano Lett. 6, 2877 2006

    Article  CAS  Google Scholar 

  167. M.D. Reed, C. Szeles, S.E. Cameron: Computational modeling of heat transport in a multi-zone high-pressure vertical electro-dynamic gradient CdZnTe furnace. J. Cryst. Growth 289(2), 494 2006

    Article  CAS  Google Scholar 

  168. H.J. Scheel: The development of crystal growth technology in Crystal Growth Technology, edited by H.J. Scheel and T. Fukuda (Wiley & Sons, New York, 2003)

  169. S. Akai, M. Yokogawam: Bulk crystal growth in Handbook of Compound Semiconductors—Growth, Processing, Characterization and Devices, edited by P.H. Halloway and G.E. McGuire (Noyes Publications, Park Ridge, NJ, 1995), pp. 1–27

    Google Scholar 

  170. L.R. Holland: Sealed silica pressure ampoules for crystal growth. J. Cryst. Growth 66, 501 1984

    Article  CAS  Google Scholar 

  171. M.J. Harrison, A.P. Graebner, W.J. McNeil, D.S. McGregor: Carbon coating of fused silica ampoules. J. Cryst. Growth 290, 597 2006

    Article  CAS  Google Scholar 

  172. S. Kuppurao, S. Brandon, J.J. Derby: Modeling the vertical Bridgman growth of cadmium zinc telluride. I. Quasi-steady analysis of heat transfer and convection. J. Cryst. Growth 155, 93 1995

    Article  CAS  Google Scholar 

  173. V. Komar, A. Gektin, D. Nalivaiko, I. Klimenko, V. Migal, O. Panchuk, A. Rybka: Characterization of CdZnTe crystals grown by HPB method. Nucl. Instrum. Methods Phys. Res., Sect. A 458(1–2), 113 2001

    Article  Google Scholar 

  174. M.A. Berding: Native defects in CdTe. Phys. Rev. B 60(12), 8943 1999

    Article  CAS  Google Scholar 

  175. R.A. Shelby, D.R. Smith, S. Schultz: Experimental verification of a negative index of refraction. Science 292, 77 2001

    Article  CAS  Google Scholar 

  176. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.J. Russell, P.J. Roberts, D.C. Allan: Single-mode photonic band gap guidance of light in air. Science 285, 1537 1999

    Article  CAS  Google Scholar 

  177. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho: Quantum cascade laser. Science 264, 553 1994

    Article  CAS  Google Scholar 

  178. Y.P. Deng, Y.F. Guan, J.D. Fowlkes, S.Q. Wen, F.X. Liu, G.M. Pharr, P.K. Liaw, C.T. Liu, P.D. Rack: A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses. Intermetallics 15(9), 1208 2007

    Article  CAS  Google Scholar 

  179. K.F. Ferris, L.M. Peurrung, J.M. Marder: Materials informatics: Fast track to new materials. Adv. Mater. Processes 165(1), 50 2007

    Google Scholar 

  180. B.M. Webb-Robertson, K.F. Ferris, D.M. Jones: Design rules for Ce-activated scintillating radiation detection materials: Compromises between luminosity and stopping power. IEEE Trans. Nucl. Sci., 55(3), 1210 2008

    Article  CAS  Google Scholar 

  181. W.W. Moses, S.E. Derenzo, M.J. Weber, S.C. Blankespoor, M.H. Ho, A.C. West: Scintillator characterization using the LBL pulsed x-ray facility. Radiat. Meas. 24(4), 37 1995

    Article  Google Scholar 

  182. Y. Zhang, F. Gao, R. Devanathan, W.J. Weber: A fast screening technique to evaluate detector response. Nucl. Instrum. Methods Phys. Res., Sect. A 579(1), 108 2007

    Article  CAS  Google Scholar 

  183. Y. Zhang, B.D. Milbrath, W.J. Weber, M. Elfman, H.J. Whitlow: Radiation detector resolution over a continuous energy range. Appl. Phys. Lett. 91, 094105 2007

    Article  CAS  Google Scholar 

  184. F.A. Danevich, A.S. Georgadze, V.V. Kobychev, B.N. Kropivyansky, S.S. Nagorny, A.S. Nikolaiko, D.V. Poda, V.I. Tretyak, I.M. Vyshnevskyi, S.S. Yurchenko, B.V. Grinyov, L.L. Nagornaya, E.N. Pirogov, V.D. Ryzhikov, V.B. Brudanin, T. Vylov, A. Federov, M. Korzhik, A. Lobko, O. Missevitch: Application of PbWO4 crystal scintillators in experiment to search for 2b decay of 116Cd. Nucl. Instrum. Methods Phys. Res., Sect. A 556, 259 2006

    Article  CAS  Google Scholar 

  185. Saint-Gobain Crystals Physical Properties of Common Inorganic Scintillators. http://www.detectors.saint-gobain.com/Media/Documents/S0000000000000001004/SGC_Scintillation_Properties_Chart.pdf (Saint-Gobain Crystals, Newbury, OH, 2007) (accessed Sep. 30, 2007)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Radiation Detection Materials Discovery initiative, a Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the Department of Energy by Battelle under contract DE-AC05-76RL01830. The authors thank Walt Hensley (PNNL) for Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.D. Milbrath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milbrath, B., Peurrung, A., Bliss, M. et al. Radiation detector materials: An overview. Journal of Materials Research 23, 2561–2581 (2008). https://doi.org/10.1557/JMR.2008.0319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0319

Navigation