Skip to main content
Log in

Nucleation and early growth of anodized TiO2 film

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Anodized films of titanium were prepared under different controlled conditions in a water-based electrolyte containing fluorine ions, using either a constant potential or a potential gradually rising to 20 V. The films were then examined using transmission electron microscopy at different stages of growth, in particular, the very early stages of growth (30 s, 200 s, and 10 min) and when the ordered nano-tubular structure was finally established (2–4 h). The use of ramped voltage during the early stages of anodization allowed a well-interconnected porous network to develop and maintained active oxidation throughout anodization. The film, as formed, consisted mainly of amorphous oxide/hydroxides of titanium with small regions of nano-sized crystals. These were found more often in the denser regions of the amorphous network, particularly the arms of the coral-like structure that formed. As the anodized film grew in thickness, the pores tended to become aligned, leading to a surface layer of nanotubes on the electrode material. Electron optical characterization revealed that the nanotubes consist of a stack of rings where the passage of the current had been optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. U. Diebold: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 2003

    Article  CAS  Google Scholar 

  2. X. Zhu, K.H. Kim Y. Jeong: Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials 22, 2199 2001

    Article  CAS  Google Scholar 

  3. B.C. Yang, M. Uchida, H.M. Kim, X.D. Zhang T. Kokubo: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25, 1003 2004

    Article  CAS  Google Scholar 

  4. S.H. Oh, R.R. Finõnes, C. Daraio, L.H. Cen S. Jin: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26, 4938 2005

    Article  CAS  Google Scholar 

  5. T. Kokubo, T. Matsushita H. Takadama: Titania-based bioactive materials. J. Eur. Ceram. Soc. 27, 1553 2007

    Article  CAS  Google Scholar 

  6. K.C. Popat, L. Leoni, C.A. Grimes T.A. Desai: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28, 3188 2007

    Article  CAS  Google Scholar 

  7. K.C. Popata, M. Eltgroth, T.J. LaTempad, C.A. Grimes T.A. Desai: Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28, 4880 2007

    Article  CAS  Google Scholar 

  8. K. Zakrzewska: Gas sensing mechanism of TiO2-based thin films. Vac. 74, 335 2004

    Article  CAS  Google Scholar 

  9. S. Akbar, P. Dutta C. Lee: High-temperature ceramic gas sensors: A review. Int. J. Appl. Ceram. Technol. 3, 302 2006

    Article  CAS  Google Scholar 

  10. G.K. Mor, M.A. Carvalho, M.V. Pishko C.A. Grimes: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 2004

    Article  CAS  Google Scholar 

  11. O.K. Varghese C.A. Grimes: Metal oxide nanoarchitectures for environmental sensing. J. Nanosci. Nanotech. 3, 277 2003

    Article  CAS  Google Scholar 

  12. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong C.A. Grimes: Hydrogen sensing using titania nanotubes. Sens. Actuators, B 93, 338 2003

    Article  CAS  Google Scholar 

  13. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey C.A. Grimes: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 2003

    Article  CAS  Google Scholar 

  14. M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes K.G. Ong: Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17, 398 2006

    Article  CAS  Google Scholar 

  15. M.A. Fox M.T. Dulay: Heterogeneous photocatalysis. Chem. Rev. 93, 341 1993

    Article  CAS  Google Scholar 

  16. M.R. Hoffmann, S.T. Martin, W. Choi D.W. Bahnemannt: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 1995

    Article  CAS  Google Scholar 

  17. A. Mills, G. Hill, S. Bhopal, I.P. Parkin S.A. O’Neill: Thick titanium dioxide films for semiconductor photocatalysis. J. Photochem. Photobiol., A 160, 185 2003

    Article  CAS  Google Scholar 

  18. G.K. Mor, K. Shankar, O.K. Varghese C.A. Grimes: Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 19, 2989 2004

    Article  CAS  Google Scholar 

  19. B.M. Reddy, I. Ganesh A. Khan: Stabilization of nanosized titania-anatase for high temperature catalytic applications. J. Mol. Catal. A: Chem. 223, 295 2004

    Article  CAS  Google Scholar 

  20. H.D. Jang, S-K. Kim S-J. Kim: Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3, 141 2001

    Article  CAS  Google Scholar 

  21. T. Minabe, D.A. Tryk, P. Sawunyama, Y. Kikuchi, K. Hashimoto A. Fujishima: TiO2-mediated photodegradation of liquid and solid organic compounds. J. Photochem. Photobiol., A 137, 53 2000

    Article  CAS  Google Scholar 

  22. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese C.A. Grimes: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 2005

    Article  CAS  Google Scholar 

  23. A. Fujishima, T.N. Rao D.A. Tryk: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 2000

    Article  CAS  Google Scholar 

  24. M. Zayat, P.G. Parejo D. Levy: Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating. Chem. Soc. Rev. 36, 1270 2007

    Article  CAS  Google Scholar 

  25. M. Grätzel: Photoelectrochemical cells. Nature 414, 338 2001

    Article  Google Scholar 

  26. M. Grätzel: Review: Dye-sensitised solar cells. J. Photochem. Photobiol., C 4, 145 2003

    Article  CAS  Google Scholar 

  27. C. Longo M.A. De Paoli: Dye-sensitized solar cells: A successful combination of materials. J. Braz. Chem. Soc. 14, 889 2003

    Article  CAS  Google Scholar 

  28. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar C.A. Grimes: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 2006

    Article  CAS  Google Scholar 

  29. J.H. Park, S. Kim A.J. Bard: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 2006

    Article  CAS  Google Scholar 

  30. J.M. Macák, H. Tsuchiya, A. Ghicov P. Schmuki: Dye-sensitised anodic TiO2 nanotubes. Electrochem. Commun. 7, 1133 2005

    Article  CAS  Google Scholar 

  31. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese C.A. Grimes: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 2006

    Article  CAS  Google Scholar 

  32. N-G. Park, J. de Van Lagemaat A.J. Frank: Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. J. Phys. Chem. B 104, 8989 2000

    Article  CAS  Google Scholar 

  33. X. Chen S.S. Mao: Synthesis of titanium dioxide (TiO2) nanomaterials. J. Nanosci. Nanotech. 6, 906 2006

    Article  CAS  Google Scholar 

  34. D.V. Bavykin, J.M. Friedrich F.C. Walsh: Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 18, 2807 2006

    Article  CAS  Google Scholar 

  35. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin M. Aucouturier: Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal. 27, 629 1999

    Article  CAS  Google Scholar 

  36. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen E.C. Dickey: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 2001

    Article  CAS  Google Scholar 

  37. L.V. Taveira, J.M. Macák, H. Tsuchiya, L.F.P. Dick P. Schmuki: Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J. Electrochem. Soc. 152, B405 2005

    Article  CAS  Google Scholar 

  38. R. Hahn, J.M. Macak P. Schmuki: Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem. Comm. 9, 947 2007

    Article  CAS  Google Scholar 

  39. N.K. Allam C.A. Grimes: Formation of vertically oriented TiO2 nanotube arrays using a fuoride free HCl aqueous electrolyte. J. Phys. Chem. C 111, 13028 2007

    Article  CAS  Google Scholar 

  40. A. Jaroenworaluck, D. Regonini, C.R. Bowen, R. Stevens D. Allsopp: Macro, micro and nanostructure of TiO2 anodized films prepared in a fluorine-containing electrolyte. J. Mater. Sci. 42, 6729 2007

    Article  CAS  Google Scholar 

  41. J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki: Smooth anodic TiO2 Nanotubes. Angew. Chem. Int. Ed. Engl. 44, 7463 2005

    Article  CAS  Google Scholar 

  42. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald C.A. Grimes: Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 110, 16179 2006

    Article  CAS  Google Scholar 

  43. K. Shankar, G.K. Mor, A. Fitzgerald C.A. Grimes: Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures. J. Phys. Chem. C 111, 21 2007

    Article  CAS  Google Scholar 

  44. H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese C.A. Grimes: A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111, 7235 2007

    Article  CAS  Google Scholar 

  45. C.A. Grimes: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17, 1451 2007

    Article  CAS  Google Scholar 

  46. M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai C.A. Grimes: TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion. J. Phys. Chem. C 111, 14992 2007

    Article  CAS  Google Scholar 

  47. S.P. Albu, A. Ghicov, J.M. Macak P. Schmuki: 250 μm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Status Solidi (RRL) 1, 65 2007

    Article  CAS  Google Scholar 

  48. J.M. Macak, S.P. Albu P. Schmuki: Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys. Status Solidi (RRL) 1, 181 2007

    Article  CAS  Google Scholar 

  49. K.S. Raja, T. Gandhi M. Misra: Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem. Comm. 9, 1069 2007

    Article  CAS  Google Scholar 

  50. G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee C.A. Grimes: Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18, 2588 2003

    Article  CAS  Google Scholar 

  51. K. Yasuda, J.M. Macak, S. Berger, A. Ghicov P. Schmuki: Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals. J. Electrochem. Soc. 154, C472 2007

    Article  CAS  Google Scholar 

  52. J. Zhao, X. Wang, R. Chen L. Li: Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun. 134, 705 2005

    Article  CAS  Google Scholar 

  53. J.M. Macak, H. Tsuchiya P. Schmuki: High-aspect-ratio TiO2 nanotubes by anodisation of titanium. Angew. Chem. Int. Ed. Engl. 44, 2100 2005

    Article  CAS  Google Scholar 

  54. D. Regonini, C.R. Bowen, R. Stevens, D. Allsopp A. Jaroenworaluck: Anodised TiO2 nano-tubes: Voltage ramp influence on the nano-structured oxide and investigation of phase changes promoted by thermal treatments. Phys. Status Solidi A 204, 1814 2007

    Article  CAS  Google Scholar 

  55. Y.Z. Huang D.J. Blackwood: Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates. Electrochim. Acta 51, 1099 2005

    Article  CAS  Google Scholar 

  56. Y. Sul, C.B. Johansson, Y. Jeong T. Albrektsson: The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med. Eng. Phys. 23, 329 2001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is a part of the project supported financially by National Metal and Materials Technology Center (MTEC) under project fund No. MT-B-48-CER-07-190-I. The Department of Microelectronics of the Slovak University of Technology and International Laser Center (Bratislava) is also acknowledged for providing SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jaroenworaluck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaroenworaluck, A., Regonini, D., Bowen, C. et al. Nucleation and early growth of anodized TiO2 film. Journal of Materials Research 23, 2116–2124 (2008). https://doi.org/10.1557/JMR.2008.0276

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0276

Navigation